Patents Assigned to SET NORTH AMERICA, LLC
  • Patent number: 11134598
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: September 28, 2021
    Assignee: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20210227735
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: October 30, 2020
    Publication date: July 22, 2021
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20210227734
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: October 30, 2020
    Publication date: July 22, 2021
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20210227732
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: October 30, 2020
    Publication date: July 22, 2021
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20210227733
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: October 30, 2020
    Publication date: July 22, 2021
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20210219474
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: October 27, 2020
    Publication date: July 15, 2021
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20210219475
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: October 30, 2020
    Publication date: July 15, 2021
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132394
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132396
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132397
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132393
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132398
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132399
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20180132395
    Abstract: Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 10, 2018
    Applicant: SET North America, LLC
    Inventor: Eric Frank Schulte
  • Publication number: 20110011531
    Abstract: A method of removing oxidation from certain metallic contact surfaces utilizing a combination of relatively simple and inexpensive off-the-shelf equipment and specific chemistry. The method being a very rapid dry process which does not require a vacuum or containment chamber, or toxic gasses/chemicals, and does not damage sensitive electronic circuits or components. Additionally, the process creates a passivation layer on the surface of the metallic contact which inhibits further oxidation while allowing rapid and complete bonding, even many hours after surface treatment, without having to remove the passivation layer. The process utilizes a room-ambient plasma applicator with hydrogen, nitrogen, and inert gasses.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 20, 2011
    Applicant: SET NORTH AMERICA, LLC
    Inventor: Eric Frank SCHULTE