Patents Assigned to SIGMASENSE, LLC.
  • Patent number: 11906587
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: February 20, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11899867
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating a stream of capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value within a temporal period; and processing the capacitance image data to determine a touchless gesture occurring within the temporal period.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: February 13, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Patent number: 11896367
    Abstract: A method includes obtaining foot force data that is created by sampling, in accordance with a sampling signal, data from a plurality of pressure sensing elements of a shoe sensor system, where the plurality of pressure sensing elements are distributed in a pattern having a first pressure sensing element at a fifth metatarsal area of a lateral wall of an insole of a shoe associated with the shoe sensor system, and a second pressure sensing element at a first metatarsal area of a medial wall of the insole. The method further includes processing the foot force data to determine a horizontal force of a foot of a user of the shoe sensor system while the user is performing a movement while wearing the shoe.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: February 13, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Timothy W. Markison, Sayfe Kiaei, Gary McCoy
  • Patent number: 11899888
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 13, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11899499
    Abstract: A device having a flexible touch screen display configured to display images in at least a first touch area and a second touch area. The first touch area is configured to rotate with respect to the second touch area along a folding axis. A first plurality of touch sensitive column and row electrodes are integrated into the first touch area and a second plurality of column and row electrodes are integrated into the second touch area of the flexible display. The device further includes a plurality of drive-sense circuits that drive sensor signals on the electrodes. A processing module senses, based on the sensor signals, an electrical characteristic of at least one row electrode and at least one column electrode of the first touch area or the second touch area and determines, based on the electrical characteristic, a proximal touch to at least one of the first touch area or the second touch area.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: February 13, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray
  • Publication number: 20240048356
    Abstract: A method includes generating, by a transmit digital to analog circuit of a low voltage drive circuit (LVDC), analog outbound data. The analog outbound data includes a direct current (DC) component and an oscillating component at a first frequency. The method further includes generating, by an analog transmit encryption signal generator of a transmit encrypt module of the LVDC, an analog transmit encryption signal having at least one frequency component, multiplying, by a mixer of the transmit encrypt module, the analog outbound data with the analog transmit encryption signal to produce an encrypted transmit signal having frequency components that differ from the first frequency. The method further includes generating, by a power source circuit of a drive-sense circuit of the LVDC, the encrypted analog outbound data as an analog transmit signal of a bus signal based on analog inbound data.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 8, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Michael Shawn Gray, Timothy W. Markison
  • Publication number: 20240044952
    Abstract: An impedance sensing circuit includes first and second current sources and first and second bias current sources that are appropriately coupled to first and second resistors. The impedance sensing circuit also includes a comparator that compares a first voltage based on the first terminal of the first resistor to a second voltage based on the first terminal of the second resistor to generate a comparator output signal. Either the comparator output signal or a digital signal based on the comparator output signal operates to regulate the current signals output from the first and second current sources so that the first voltage is same as the second voltage. The comparator output signal and the digital signal is representative of a difference between the first voltage and the second voltage that is based on an impedance difference between the first resistor and the second resistor.
    Type: Application
    Filed: June 8, 2023
    Publication date: February 8, 2024
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20240028172
    Abstract: A touch controller includes a processing module operably coupled to a plurality of sensing circuits, the processing module is operable to receive a sense signal regarding an electrical characteristic of a sensor of a plurality of sensors. The processing module is further operable to determine the sense signal indicates the electrical characteristic is affected by an identifying signal emitted by a finger. The processing module is further operable to determine a coordinate location of the sensor. The processing module is further operable to generate a proximal touch signal that includes the coordinate location of the sensor.
    Type: Application
    Filed: August 25, 2023
    Publication date: January 25, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Timothy W. Markison
  • Publication number: 20240019964
    Abstract: A method includes a processing module obtaining touch data at a touch data rate. The method further includes the processing module obtaining video data at a refresh rate, wherein the touch data rate is greater than the refresh rate. For a frame of the video data, the method further includes the processing module determining a touch movement trend based on the touch data. The method further includes the processing module determining a position offset for a graphical representation of the touch data based on the touch movement trend. When the position offset exceeds an offset threshold, the method further includes the processing module adjusting position of the graphical representation of the touch data within the frame of video data based on the position offset to produce an adjusted frame of video data.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 18, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Patent number: 11875005
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value; and processing the capacitance image data to determine a touchless indication proximal to the touch screen display based on a touchless indication threshold.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: January 16, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Publication number: 20240010145
    Abstract: A sensor system is operable to: communicate a first ID signal at a first frequency between a first perimeter sensor and a first sensor circuit through a body of a first user in a first vehicle chair, determine interaction with an interactable element corresponding to the first sensor circuit based on sensed signal data from a first sensor circuit indicating changes in electrical properties of an electrode of the first sensor circuit; determine the interaction is via the first user in the first vehicle chair when the sensed signal data indicates detection of the first frequency; and when the sensed signal data indicates detection of the first frequency, perform a first vehicle functionality of a set of vehicle functionalities based on configuration data corresponding to the first user.
    Type: Application
    Filed: May 16, 2023
    Publication date: January 11, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand
  • Publication number: 20240010144
    Abstract: A sensor system is operable to: communicate a first ID signal at a first frequency between a first passenger restraint and a first sensor circuit through a body of a first user in a first vehicle chair; determine interaction with an interactable element corresponding to the first sensor circuit based on sensed signal data from a first sensor circuit indicating changes in electrical properties of an electrode of the first sensor circuit; determine the interaction is via the first user in the first vehicle chair when the sensed signal data indicates detection of the first frequency; and when the sensed signal data indicates detection of the first frequency, perform a first vehicle functionality of a set of vehicle functionalities based on configuration data corresponding to the first user.
    Type: Application
    Filed: May 16, 2023
    Publication date: January 11, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand
  • Patent number: 11868298
    Abstract: A method includes obtaining, by a first processing entity, first data communication capabilities of a first host device. The first host device and the first processing entity are associated with a first low voltage drive circuit. The method further includes obtaining, by a second processing entity, second data communication capabilities of a second host device. The second host device and the second processing entity are associated with a second low voltage drive circuit. The method further includes reconciling, by one or more of the first and second processing entities, the first and second data communication capabilities to produce reconciled data communication capabilities and determining a data conveyance scheme and a data communication scheme for a one-to-one communication between the first and second low voltage drive circuits based on the reconciled data communication capabilities.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: January 9, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20240004602
    Abstract: An interactive device is operable to receive a first plurality of sensed signals during a first temporal period. The first plurality of sensed signals indicate a first plurality of changes in electrical characteristics of a set of electrodes of the plurality of electrodes. A first impedance pattern identifying a writing passive device is detected based on interpreting the first plurality of changes in the electrical characteristics of the set of electrodes during the first temporal period. The writing passive device is detected based on detecting the first impedance pattern. Written user notion data is detected based on detecting movement of the writing passive device in relation to the interactive display device during the first temporal period. The written user notation data is processed for display in accordance with at least one display setting corresponding to the writing passive device.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 4, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
  • Patent number: 11861082
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: January 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11863197
    Abstract: An analog to digital converter (ADC) senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. The digital output signal provided to the N-bit DAC is an inverse function of the load current. The ADC is operative to sense very low currents (e.g., currents as low as is of pico-amps) and consume very little power (e.g., less than 2 ?W).
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: January 2, 2024
    Assignee: SigmaSense, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230417531
    Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 28, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Shayne X. Short, Timothy W. Markison
  • Publication number: 20230409186
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Application
    Filed: August 28, 2023
    Publication date: December 21, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230400822
    Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230398362
    Abstract: A pacemaker system includes a drive-sense circuit (DSC) operably coupled to a pacemaker lead. The DSC generates a pace signal including electrical impulses based on a reference signal. The DSC provides the pace signal via the pacemaker lead to an electrically responsive portion of a cardiac conductive system of a subject to facilitate cardiac operation of a cardiovascular system of the subject. The DSC senses, via the pacemaker lead, cardiac electrical activity of the cardiovascular system of the subject that is generated in response to the pace signal and electrically coupled into the pacemaker lead and generates a digital signal that is representative of the cardiac electrical activity of the cardiovascular system of the subject that is sensed via the pacemaker lead. The DSC provides digital information to one or more processing modules that includes and/or is coupled to memory and that provide the reference signal to the DSC.
    Type: Application
    Filed: August 21, 2023
    Publication date: December 14, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Shayne X. Short, Timothy W. Markison