Patents Assigned to Solarlytics, Inc.
  • Patent number: 11152790
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across an individual solar cell, an array of solar cells configured as a panel, or a group of solar panels. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. Compared to conventional solar cells, these accelerated electron-hole pairs travel a shorter distance from creation (by incident optical radiation) and spend less time within the solar cell material, therefore the electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 19, 2021
    Assignee: SOLARLYTICS, INC.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 11108240
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across an individual solar cell, an array of solar cells configured as a panel, or a group of solar panels. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. Compared to conventional solar cells, these accelerated electron-hole pairs travel a shorter distance from creation (by incident optical radiation) and spend less time within the solar cell material, therefore the electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 31, 2021
    Assignee: SOLARLYTICS, INC.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 11063439
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: July 13, 2021
    Assignee: Solarlytics, Inc.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10978878
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across an individual solar cell, an array of solar cells configured as a panel, or a group of solar panels. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. Compared to conventional solar cells, these accelerated electron-hole pairs travel a shorter distance from creation (by incident optical radiation) and spend less time within the solar cell material, therefore the electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: April 13, 2021
    Assignee: SOLARLYTICS, INC.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10826296
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: November 3, 2020
    Assignee: SOLARLYTICS, INC.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10804706
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: October 13, 2020
    Assignee: SOLARLYTICS, INC.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10804705
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 13, 2020
    Assignee: SOLARLYTICS, INC.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10355489
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across an individual solar cell, an array of solar cells configured as a panel, or a group of solar panels. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. Compared to conventional solar cells, these accelerated electron-hole pairs travel a shorter distance from creation (by incident optical radiation) and spend less time within the solar cell material, therefore the electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 16, 2019
    Assignee: Solarlytics, Inc.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10236689
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: March 19, 2019
    Assignee: Solarlytics, Inc.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10193345
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across an individual solar cell, an array of solar cells configured as a panel, or a group of solar panels. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. Compared to conventional solar cells, these accelerated electron-hole pairs travel a shorter distance from creation (by incident optical radiation) and spend less time within the solar cell material, therefore the electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 29, 2019
    Assignee: Solarlytics, Inc.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10103547
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: October 16, 2018
    Assignee: Solarlytics, Inc.
    Inventors: Robert P. McNamara, Douglas M. Raymond
  • Patent number: 10069306
    Abstract: A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across an individual solar cell, an array of solar cells configured as a panel, or a group of solar panels. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. Compared to conventional solar cells, these accelerated electron-hole pairs travel a shorter distance from creation (by incident optical radiation) and spend less time within the solar cell material, therefore the electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: September 4, 2018
    Assignee: Solarlytics, Inc.
    Inventors: Robert P. McNamara, Douglas M. Raymond