Patents Assigned to Solvay USA, Inc.
  • Patent number: 9065065
    Abstract: An organic optoelectronic device includes a substrate, an anode, a cathode, an active region comprising an organic material, an encapsulation that isolates the active region from an ambient environment, wherein the encapsulation comprises a housing, and a first hermetically sealed electrical path through the housing.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: June 23, 2015
    Assignee: SOLVAY USA, INC.
    Inventor: Glenn Thompson
  • Patent number: 9062152
    Abstract: Materials for organic electronic devices including organic photovoltaic devices. An oligomer or polymer comprising: wherein R1, R2, R3, and R4 are independently hydrogen or solubilizing groups. Monomers and ink compositions can be also prepared. The materials can be used in an OPV active layer and show excellent absorption properties with bathochromic shift.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 23, 2015
    Assignee: SOLVAY USA, INC.
    Inventor: Christophe René Gaston Grenier
  • Patent number: 9044413
    Abstract: The present invention relates to a block polymeric material. Typically the block polymer comprises units capable of having an average cationic charge density of about 15 or less, preferably 5 or less, more preferably from about 0.05 to about 5, even more preferably from about 0.05 to about 2.77, even more preferably from about 0.1 to about 2.75, most preferably from about 0.75 to about 2.25 units per 100 daltons molecular weight at a pH of from about 4 to about 12. The polymeric material is a suds enhancer and a suds volume extender for personal care products such as soaps and shampoos. The compositions have increased effectiveness for preventing re-deposition of grease during hand and body washing. The polymers are also effective as a soil release agent in fabric cleaning compositions.
    Type: Grant
    Filed: July 7, 2013
    Date of Patent: June 2, 2015
    Assignee: SOLVAY USA INC.
    Inventors: Dominic Wai-Kwing Yeung, Vance Bergeron, Jean-Francois Bodet, Mark Robert Sivik, Bernard William Kluesener, William Michael Scheper
  • Patent number: 8968885
    Abstract: Polymers which can be used in p-type materials for organic electronic devices and photovoltaic cells. Compounds, monomers, dimers, trimers, and polymers comprising: Good photovoltaic efficiency and lifetime can be achieved. The R group can provide solubility, environmental stability, and fine tuning of spectroscopic and/or electronic properties. Different polymer microstructures can be prepared which encourage multiple band gaps and broad and strong absorptions. The carbonyl can interact with adjacent thiophene rings to provide backbone with rigidity, induce planarity, and reduce and/or eliminate intramolecular chain twisting defects. Polymers comprising benzodithiophene and/or benzothiadiazole structures can show particularly high performance.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 3, 2015
    Assignee: Solvay USA, Inc.
    Inventors: Christopher T. Brown, Christophe René Gaston Grenier, Chad Landis, Elena E. Sheina, Atta Gueye
  • Patent number: 8946378
    Abstract: Conducting polymer systems for hole injection or transport layer applications including a composition comprising: a water soluble or water dispersible regioregular polythiophene comprising (i) at least one organic substituent, and (ii) at least one sulfonate substituent comprising sulfonate sulfur bonding directly to the polythiophene backbone. The polythiophene can be water soluble, water dispersible, or water swellable. They can be self-doped. The organic substituent can be an alkoxy substituent, or an alkyl substituent. OLED, PLED, SMOLED, PV, and ESD applications can be used.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Brian Woodworth, Christopher Greco, Darin Laird, Mathew Mathai
  • Patent number: 8920939
    Abstract: Regioregular polythiophenes having heteroatoms in the substituents can be used in hole injection layer and hole transport layers for electroluminescent devices. Copolymers and organic oxidants can be used. Homopolymers can be used. Metallic impurities can be removed. The heteroatom can be oxygen and can be substituted at the 3-position. Advantages include versatility, synthetic control, and good thermal stability. Different device designs can be used.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: December 30, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Shawn P. Williams, Darin W. Laird, Troy D. Hammond
  • Patent number: 8906520
    Abstract: A sulfonated polymer comprising a 3-substituted fused thienothiophene repeat unit, a composition comprising the polymer, a method of making the polymer, and a device comprising the polymer. The polymers can be used in hole injection or hole transport layers, or other applications in organic electronic devices.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: December 9, 2014
    Assignee: Solvay USA, Inc.
    Inventor: Venkataramanan Seshadri
  • Patent number: 8907033
    Abstract: A polymeric material including units capable of having a cationic charge at a pH of from about 4 to about 12; provided that the polymeric material has an average cationic charge density from about 2.75 or less units per 100 daltons molecular weight at a pH of from about 4 to about 12. The polymeric material is a suds enhancer and a suds volume extender for hand dishwashing compositions and personal care products such as soaps, shaving cream foam, foaming shaving gel, foam depiliatories and shampoos. The polymers are also effective as a soil release agent in fabric cleaning compositions. The polymers are also useful in agrochemical foam, fire-fighting foam, hard surface cleaner foam, and coagulant for titanium dioxide in paper making.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: December 9, 2014
    Assignee: Solvay USA Inc.
    Inventors: Vance Bergeron, Dominic Wai-Kwing Yeung, Jean-Francois Bodet, Mark Robert Sivik, Bernard William Kluesener, William Michael Scheper
  • Patent number: 8894887
    Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 25, 2014
    Assignees: Solvay USA, Inc., Nano-C, Inc.
    Inventors: Darin W. Laird, Reza Stegamat, Henning Richter, Victor Vejins, Lawrence T. Scott, Thomas A. Lada, II
  • Patent number: 8865025
    Abstract: Use of certain materials in hole injection or hole transport layers can improve the operational lifetimes in organic electronic devices. Compositions comprising a doped conjugated polymer, doped with a redox dopant, including iodonium salt, can increase lifetimes. Inks can be formulated and cast as films in organic electronic devices including OLEDs, PHOLEDs, and OPVs. One embodiment provides a composition with a conjugated polymer doped with a redox dopant. Non-aqueous based inks can be formulated. Iodonium salts can be used.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: October 21, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Christopher T. Brown, Jessica Benson-Smith, Edward S. Yang
  • Patent number: 8859718
    Abstract: An improved polymerization method including a method comprising providing a reaction mixture comprising a first monomer, an organic oxidant, and at least one Lewis acid or Brönsted acid, wherein the first monomer comprises at least one optionally substituted heterocyclic ring, wherein the heterocyclic ring comprises at least one heteroatom; and reacting the reaction mixture to obtain a conjugated polymer. The method can reduce the content of undesirable entities in the polymer such as halogens and metals, which can be useful in organic electronic device applications. Purification methods also are adapted to remove organic and inorganic impurities.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 14, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Elena E. Sheina, Chad Landis, Venkataramanan Seshadri, Christopher T. Brown, Samuel M. Mazza
  • Patent number: 8836221
    Abstract: A lighting system includes a plurality of organic light emitting diode (OLED) devices. By selecting the plurality of OLED devices, or by selectively controlling the plurality of OLED devices, the color characteristics of the lighting system can be tuned. The lifetime of the lighting system can be improved.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 16, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Mark L. Storch, Mathew K. Mathai, Glenn Thompson, Joseph Greenberg
  • Patent number: 8828274
    Abstract: Polymers comprising a backbone comprising at least one arylamine repeat moiety and at least one linking moiety, wherein the linking moiety does not comprise an aryl moiety. Ink formulations and organic electronic devices such as OLEDs or OPVs can be formed from the polymers and doped polymers. The polymers can be used in a hole injection layer, hole transport layer, a hole extraction layer, or as a host material in an emissive layer. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: September 9, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Jessica Benson-Smith, Christopher T. Brown, Venkataramanan Seshadri, Jing Wang
  • Patent number: 8815639
    Abstract: A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 26, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Christopher T. Brown, Neetu Chopra, Christopher Knittel, Mathew Mathai, Venkataramanan Seshadri, Jing Wang, Brian Woodworth
  • Patent number: 8815124
    Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: August 26, 2014
    Assignees: Solvay USA, Inc., Nano-C, Inc.
    Inventors: Darin W. Laird, Reza Stegamat, Henning Richter, Viktor Vejins, Larry Scott, Thomas A. Lada, Malika Daadi
  • Patent number: 8791451
    Abstract: A composition comprising: at least one conjugated polymer, at least one second polymer comprising repeat units represented by: (I) optionally, —[CH2—CH(Ph-OH)]— and (II) —[CH2—CH(Ph-OR)]— wherein Ph is a phenyl ring and R comprises a fluorinated group, an alkyl group, an alkylsulfonic acid group, an alkylene oxide group, or a combination thereof is described. Other polymers can be used as second polymer including polymers comprising modified naphthol side groups. The composition can be used in hole injection and hole transport layers for organic electronic devices. Increased lifetime and better processability can be achieved. Versatility with useful OLED emitters can be achieved. Ink formulations can be adapted for ink jet printing. The conjugated polymer can be a polythiophene. Applications include OLEDs and OPVs.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: July 29, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Christopher T. Brown, Brian E. Woodworth, Edward S. Yang