Patents Assigned to Spectralus Corporation
  • Patent number: 9124061
    Abstract: A laser light source includes a thermoelectric cooling device, a composite green laser made up of an infrared wavelength pumped laser diode and a solid-state laser cavity designed for efficient nonlinear intra-cavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals thermally coupled with the cooling device and a red wavelength laser diode thermally coupled with said cooling device. In this manner, the cooling device maintains a common temperature of the infrared pumped laser diode and the red laser diode over an ambient temperature range.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: September 1, 2015
    Assignee: Spectralus Corporation
    Inventors: Stephan Essaian, Dzhakhangir V. Khaydarov
  • Patent number: 9019999
    Abstract: A compact, optically-pumped solid-state microchip laser device uses efficient nonlinear intracavity frequency conversion for obtaining low-cost green and blue laser sources. The laser includes a solid-state gain medium, such as Nd:YVO4, and a nonlinear crystal. The nonlinear crystal is formed of periodically poled lithium niobate or periodically poled lithium tantalate, and the crystal is either MgO-doped, ZnO-doped, or stoichiometric to ensure high reliability. The nonlinear crystal provides efficient frequency doubling to translate energy from an infrared pump laser beam into the visible wavelength range. The laser device is assembled in a package having an output aperture for the output beam and being integrated with an optical bench accommodating a laser assembly. The package encloses and provides heat sinking for the semiconductor diode pump laser, the microchip laser cavity assembly, the optical bench platform, and electrical leads.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 28, 2015
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Dzhakhangir Khaydarov, Andrei V. Shchegrov
  • Publication number: 20140341241
    Abstract: A laser light source includes a thermoelectric cooling device, a composite green laser made up of an infrared wavelength pumped laser diode and a solid-state laser cavity designed for efficient nonlinear intra-cavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals thermally coupled with the cooling device and a red wavelength laser diode thermally coupled with said cooling device. In this manner, the cooling device maintains a common temperature of the infrared pumped laser diode and the red laser diode over an ambient temperature range.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 20, 2014
    Applicant: Spectralus Corporation
    Inventors: Stepan Essaian, Dzhakhangir V. Khaydarov
  • Patent number: 8649404
    Abstract: A compact optically-pumped solid-state laser designed for efficient nonlinear intracavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals. These crystals contain dopants such as MgO or ZnO and/or have a specified degree of stoichiometry that ensures high reliability. The laser includes a solid-state gain media chip, such as Nd:YVO4, which also provides polarization control of the laser; and a periodically poled nonlinear crystal chip such as PPMgOLN or PPZnOLT for efficient frequency doubling of the fundamental infrared laser beam into the visible wavelength range. The described designs are especially advantageous for obtaining low-cost green and blue laser sources. Also described design of the continuously operated laser with an electro-optic element for modulation of the intensity of the laser output at frequencies up to hundred of megahertz. Such modulation is desired for various applications, including compact projectors with high resolution.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 11, 2014
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Dzhakhangir Khaydarov, Andrei Shchegrov
  • Patent number: 8000357
    Abstract: A compact and efficient ultraviolet laser source based on a optically-pumped solid-state or fiber laser that produces near-infrared output light suitable for nonlinear frequency conversion. The infrared laser output is frequency tripled or quadrupled to produce light in the ultraviolet wavelength range (200 nm to 400 nm). The novel technology is the use of highly efficient periodically poled nonlinear crystals, such as stoichiometric and MgO-doped lithium tantalate and lithium niobate. As opposed to conventional frequency-converted UV laser sources, which have high power consumption, high cost, and low efficiency, the laser sources of this invention utilize high efficiency nonlinear conversion provided by periodically poled materials and allow lower-cost architectures without additional focusing lenses, high power pump diodes, etc.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 16, 2011
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Andrei Shchegrov
  • Patent number: 7742510
    Abstract: A compact optically-pumped solid-state laser designed for efficient nonlinear intracavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals. These crystals contain dopants such as MgO or ZnO and/or have a specified degree of stoichiometry that ensures high reliability. The laser includes a solid-state gain media chip, such as Nd:YVO4, which also provides polarization control of the laser; and a periodically poled nonlinear crystal chip such as PPMgOLN or PPZnOLT for efficient frequency doubling of the fundamental infrared laser beam into the visible wavelength range. The described designs are especially advantageous for obtaining low-cost green and blue laser sources.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: June 22, 2010
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Andrei Shchegrov
  • Patent number: 7724797
    Abstract: A compact solid-state laser array for nonlinear intracavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals. The crystals contain dopants such as MgO and/or have a specified stoichiometry. A preferred embodiment comprises a microchip laser cavity that includes a solid-state gain chip, such as Nd:YVO4, which also provides polarization control of the laser; and a periodically poled nonlinear crystal chip such as PPMgOLN, for efficient frequency doubling of a infrared laser pump beam into the visible wavelength range. The described designs are especially advantageous for obtaining low-cost green and blue laser sources. The use of such high-efficiency pumps and nonlinear materials allows scaling of a compact, low-cost architecture to provide high output power levels in the blue/green wavelength range.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: May 25, 2010
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Andrei Shchegrov
  • Patent number: 7570676
    Abstract: A compact and efficient ultraviolet laser source based on a optically-pumped solid-state or fiber laser that produces near-infrared output light suitable for nonlinear frequency conversion. The infrared laser output is frequency tripled or quadrupled to produce light in the ultraviolet wavelength range (200 nm to 400 nm). The novel technology is the use of highly efficient periodically poled nonlinear crystals, such as stoichiometric and MgO-doped lithium tantalate and lithium niobate. As opposed to conventional frequency-converted UV laser sources, which have high power consumption, high cost, and low efficiency, the laser sources of this invention utilize high efficiency nonlinear conversion provided by periodically poled materials and allow lower-cost architectures without additional focusing lenses, high power pump diodes, etc.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: August 4, 2009
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Andrei Shchegrov