Patents Assigned to Spheryx, Inc.
  • Patent number: 11948302
    Abstract: An in-line holographic microscope can be used to analyze a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. An assay using the holographic microscope for holographic particle characterization directly detect viruses, antibodies and related targets binding to the surfaces of specifically functionalized micrometer-scale colloidal probe beads. The system detects binding of targets by directly measuring associated changes in the bead's diameter without the need for downstream labeling and analysis.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: April 2, 2024
    Assignees: New York University, Spheryx, Inc
    Inventors: David G. Grier, Fook Chiong Cheong, Kaitlynn Snyder, Rushna Quddus, Lauren E. Altman, Kent Kirshenbaum
  • Patent number: 11921023
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: March 5, 2024
    Assignees: New York University, Spheryx, Inc.
    Inventors: David G. Grier, Mary Ann Odete, Fook Chiong Cheong, Annemarie Winters, Jesse J. Elliott, Laura A. Philips
  • Publication number: 20230213425
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 6, 2023
    Applicants: NEW YORK UNIVERSITY, SPHERYX, INC.
    Inventors: David G. GRIER, Mary Ann ODETE, Fook Chiong CHEONG, Annemarie WINTERS, Jesse J. ELLIOTT, Laura A. PHILIPS
  • Publication number: 20230137843
    Abstract: A holographic microscopy characterization (HMC) process for utilizing holographic video microscopy to provide an efficient, automated, label-free method of accurately identifying cell viability. Optical properties of a sample of cells are determined by HMC. The optical properties are compared to known samples or compared over time to observe changes in the optical properties, enabling identification of cells as viable or not viable, or as extra-cellular or degraded cellular materials.
    Type: Application
    Filed: October 28, 2022
    Publication date: May 4, 2023
    Applicant: SPHERYX, INC.
    Inventors: Mary Ann ODETE, Rostislav BOLTYANSKIY, Fook Chiong CHEONG, Laura A. PHILIPS
  • Patent number: 11543338
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 3, 2023
    Assignees: New York University, Spheryx, Inc.
    Inventors: David G. Grier, Mary Ann Odete, Fook Chiong Cheong, Annemarie Winters, Jesse J. Elliott, Laura A. Philips