Patents Assigned to Sterlite Technologies Limited
  • Patent number: 11128939
    Abstract: The present disclosure provides a method for dynamically allocating an optical channel. The method includes receiving a user input request from a user. In addition, the method includes receiving an OLS spectrum data of the optical channel. Further, the method includes computing one or more configuration parameters for a predefined pair of transponders of one or more transponders based on the user input request and the OLS spectrum data. Furthermore, the method includes configuring the one or more configuration parameters on the predefined pair of transponders of the one or more transponders. Moreover, the user is associated with the one or more transponders. The user input request is associated with the predefined pair of transponders of the one or more transponders. The user input request includes parameters for the optical channel allocation on the predefined pair of transponders.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: September 21, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Puneet Kumar Agarwal, Vishnu K
  • Patent number: 11125959
    Abstract: The present disclosure provides a flat drop optical fiber cable. The flat drop optical fiber cable includes one or more buffer tubes. The one or more buffer tubes extend substantially along a longitudinal axis of the flat drop optical fiber cable. The flat drop optical fiber cable includes a plurality of optical fiber ribbons. The flat drop optical fiber cable includes one or more water blocking tapes. The one or more water blocking tapes are positioned in the flat drop optical fiber cable in one or more arrangements. The flat drop optical fiber cable includes a cable sheath. The cable sheath encapsulates the one or more buffer tubes and the one or more water blocking tapes. The flat drop optical fiber cable includes a plurality of strength members.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 21, 2021
    Assignee: STERLiTE TECHNOLOGiES LiMiTED
    Inventors: Kishore Sahoo, Kangbam Tenzing
  • Patent number: 11119289
    Abstract: The present disclosure provides a formfitting loose tube for optic cables. The formfitting loose tube includes a loose tube wall. The loose tube wall includes first sides, second sides, a plurality of deformation induction tabs and a plurality of fiber optics stacked together having a shape form. The plurality of deformation induction tabs includes curving sections. The curving sections intersect the first sides and the second sides at intersections. The first sides and the second sides of the loose tub wall are configured to fit the shape form of the plurality of fiber optics stacked together. The plurality of deformation induction tabs induces elastic deformation of the loose tube wall under external stress.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 14, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Steve Bullock, Sravan Kumar, Kishore Sahoo
  • Patent number: 11115120
    Abstract: The present disclosure relates to an optical line terminal device. The optical line terminal device includes a data center point of presence module, one or more access point of presence modules and one or more aggregation point of presence modules. The data center point of presence module includes a first region and a second region. The first region includes a leaf and spine fabric and a top-of-rack architecture. The second region includes compute infrastructure and storage infrastructure. Further, the one or more access point of presence modules include optical line terminal-Gigabit Passive Optical Networks access input/output and Metro Ethernet Access input/output. The one or more aggregation point of presence include access input/output hardware abstraction, limited compute infrastructure and multi-protocol label switching transfer router.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: September 7, 2021
    Assignee: Sterlite Technologies Limited
    Inventors: Badri Gomatam, Saurabh Chattopadhyay
  • Patent number: 11105993
    Abstract: The present disclosure provides a sensory cable (100). The sensory cable (100) includes a central strength member (106). In addition, the sensory cable (100) includes a first layer (108). The first layer (108) surrounds the central strength member (106). The first layer (108) is made of low smoke zero halogen. Further, the sensory cable (100) includes a plurality of optical units (110). Furthermore, the sensory cable (100) includes a second layer (112). The second layer (112) is made of a plurality of glass yarns. Moreover, the sensory cable (100) includes a first jacket layer (114). The first jacket layer (114) is made of either polyethylene or polypropylene. Also, the sensory cable (100) includes a second jacket layer (116). The second jacket layer (116) is made of nylon.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: August 31, 2021
    Assignee: STERLiTE TEchNologiES LimiTED
    Inventors: Sravan Kumar, Dnyaneshwar Wagh, Kishore Sahoo, Atul Mishra, Vikas Shukla
  • Patent number: 11081257
    Abstract: The present disclosure relates to an insulated conductor for a telecommunications cable. The insulated conductor includes a first surface surrounding a core region of the notched conductor. The first surface defines a plurality of grooves extending radially inward towards the second longitudinal axis of the insulated conductor. Each of the plurality of grooves comprises of a first groove area section and a second groove area section. The first groove area section and the second groove area section are in continuous contact. The insulated conductor includes an insulation layer circumferentially surrounding the conductor. The insulated conductor has a first diameter in a range of about 0.5 millimeters to 0.65 millimeters. The telecommunications cable includes, plurality of twisted pairs of insulated conductors, a separator and a cable jacket.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: August 3, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Andrew Kaczmarski, Darshana Bhatt, Aakar Shivankar, Aalap Shah
  • Patent number: 11025361
    Abstract: The present disclosure provides system to configure one or more photonics components using a method. The method includes a first step to initialize a photonic abstraction interface driver at a photonic abstraction system. In addition, the method includes another step to call a node detection function at the photonic abstraction system. Further, the method includes yet another step to call a plurality of application programming interfaces (APIs) at the photonic abstraction system. Furthermore, the method includes yet another step to de-initialize the photonic abstraction interface driver at the photonic abstraction system. Moreover, the photonic abstraction interface driver is initialized by a photonic abstraction interface host. Also, the photonic abstraction interface host and the photonic abstraction interface driver are layers of a photonic abstraction interface (PAI). Also, the photonic abstraction interface driver translates the photonic abstraction interface (PAI) into a plurality of shared libraries.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 1, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Puneet Kumar Agarwal, Vishnu Krishna
  • Patent number: 10955612
    Abstract: Embodiments describe an optical fiber that includes a core. The core has high compressive stress. The compressive stress of the core is in a range of about 20 to 60 MPa. The optical fiber further includes a cladding. The cladding is divided into a first cladding layer and a second cladding layer. The second cladding layer has a high residual stress. The high residual stress of the second cladding layer is in a range of about 20 to 60 MPa. The optical fiber enables reduction of particle related breaks. Further, the optical fiber has elevated LLT strength. The LLT strength is about 6 Kg. The optical fiber has high proof test yield. Furthermore, the optical fiber is highly sensitive to micro-bending of the optical fiber.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: March 23, 2021
    Assignee: Sterlite Technologies Limited
    Inventors: Pramod Watekar, Annesha Maity, Manoj Mittal, Sandeep Gaikwad, Sham Nagarkar, Bhalchandra Pathak, Sathis Ram
  • Patent number: 10950368
    Abstract: A telecommunications cable includes a plurality of twisted pairs of insulated conductors. The plurality of twisted pairs of insulated conductors extends substantially along a longitudinal axis of the telecommunications cable. In addition, the telecommunications cable includes a separator. The separator separates each twisted pair of insulated conductor of the plurality of twisted pairs of insulated conductors. Moreover, the telecommunications cable includes a first layer. The first layer surrounds the separator and the plurality of twisted pairs of insulated conductors along a length of the telecommunications cable. The separator is I-shaped filler. The separator is made of low smoke zero halogen material or MDPE. The first layer is made of low smoke zero halogen material, polyethylene or poly vinyl chloride. The first layer has a thickness in a range of about 0.4 millimeter-2.5 millimeters.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 16, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Andrew Kaczmarski, Darshana Bhatt
  • Patent number: 10921541
    Abstract: The present disclosure provides an optical waveguide cable. The optical waveguide cable includes one or more optical waveguide bands positioned substantially along a longitudinal axis of the optical waveguide cable. The optical waveguide cable includes one or more layers substantially concentric to the longitudinal axis of the optical waveguide cable. The one or more layers include a cylindrical enclosure. The one or more optical waveguide bands include a plurality of light transmission elements. The density of the cylindrical enclosure is at most 0.935 gram per cubic centimeter. The optical waveguide cable has a waveguide factor of about 44%. The one or more optical waveguide bands are coupled longitudinally with the cylindrical enclosure.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: February 16, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Venkatesh Murthy, Kishore Sahoo, Sravan Kumar Peraka, Atul Mishra, Pavan Kumar Moturu, Kavya Chintada
  • Patent number: 10901165
    Abstract: The present invention relates to padded optic fiber ribbons for dry optic fiber cables. The dry padded optic fiber ribbons include a plurality of optic fiber ribbons stacked on top of each other having a cross-sectionally rectangular shape. In addition, the dry padded optic fiber ribbons include a plurality of dry paddings. Each dry padding of the plurality of dry paddings has an inner side and an outer side. Further, the dry padded optic fiber ribbons include at least one tape wrapping around the plurality of dry paddings.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 26, 2021
    Assignee: STERLiTE TECHNOLOGiES LiMiTED
    Inventors: Seldon Benjamin, Sravan Kumar, Kishore Sahoo
  • Patent number: 10884206
    Abstract: The present invention discloses a fiber optical cable with a plurality of bendable optical fiber ribbon. The fiber optical cable with bendable ribbons increases the total fiber counts compared to conventional optical fiber ribbon cables by eliminating empty spaces of the conventional cables due to stacking of the ribbons in the cross-sectionally circular shape of the loose tubes and the cable jacket. According to an embodiment of the present invention, a bendable ribbon will further allow ribbon labeling on a flat side of the ribbon.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 5, 2021
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Seldon Benjamin, Sravan Kumar, Kishore Sahoo
  • Patent number: 10845559
    Abstract: The present disclosure provides a flame retardant optical fiber cable. The flame retardant optical fiber cable includes a plurality of bundle binders. In addition, the flame retardant optical fiber cable includes a first layer, a second layer, a third layer, a fourth layer, a fifth layer, a sixth layer, a seventh layer and an eighth layer. The first layer surrounds a plurality of bundle binders. The second layer surrounds the first layer. The third layer surrounds the second layer. The fourth layer surrounds the third layer. The fifth layer surrounds the fourth layer. The sixth layer surrounds the fifth layer. The seventh layer surrounds the sixth layer. The eighth layer surrounds the seventh layer.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: November 24, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Kishore Sahoo, Venkatesh Murthy, Dnyaneshwar Wagh, Sunil Senapati, Ashutosh Pandey
  • Patent number: 10741305
    Abstract: Embodiments describe a jacket for use in a telecommunications cable. The jacket includes a jacket body. The jacket body extends along a longitudinal axis of the telecommunications cable. The longitudinal axis passes through a geometrical center of the telecommunications cable. The jacket body includes a first surface. The first surface surrounds core region of the telecommunications cable. The first surface defines a plurality of grooves extending radially outwardly from the longitudinal axis of the telecommunications cable. The plurality of grooves includes a first groove area section and a second groove area section. The first groove area section and the second groove area section are in continuous contact with each other. In addition, the jacket body includes a second surface. The second surface extends along the longitudinal axis of the telecommunications cable and disposed in a spaced relation to the first surface.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: August 11, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Andrew Kaczmarski, Darshana Bhatt, Noufal Kazhhungum Thottathil
  • Patent number: 10641981
    Abstract: The present disclosure provides an optical fiber cable. The optical fiber cable includes a central strength member. The central strength member lies substantially along a longitudinal axis of the optical fiber cable. The optical fiber cable includes at least one buffer tube. The at least one buffer tube is stranded helically around the central strength member. Each of the at least one buffer tube encapsulates at least one optical fiber. The optical fiber cable includes a first layer. The first layer circumferentially surrounds a core of the optical fiber cable. The optical fiber cable includes a second layer. The second layer is formed of high density polyethylene. The optical fiber cable includes at least one set of water swellable yarn and a plurality of ripcords.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: May 5, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Kishore Sahoo, Sravan Kumar, Kavya Chintada, Vikash Shukla, Venkatesh Murthy, Atul Mishra
  • Patent number: 10641982
    Abstract: The present disclosure provides an optical fiber cable (100). The optical fiber cable (100) includes a first layer (108) and a second layer (110). The second layer (110) surrounds the first layer (108). The first layer (108) includes a first plurality of buffer tubes (122). The second layer (110) comprises a second plurality of buffer tubes (124). Each buffer tube of the first plurality of buffer tubes (122) and the second plurality of buffer tubes (124) has a thickness of at most 0.15 millimeter. Each buffer tube of the first plurality of buffer tubes (122) and the second plurality of buffer tubes (124) includes a first material layer (126) and a second material layer (128). The second material layer (128) surrounds the first material layer (126). The first material layer (126) is made of polybutylene terephthalate. The second material layer (128) is made of polycarbonate.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: May 5, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Sravan Kumar, Kishore Sahoo, Atul Mishra, Vikash Shukla
  • Patent number: 10566110
    Abstract: The present disclosure relates to a telecommunications cable. The telecommunication cable includes a plurality of twisted pairs of insulated wires extending substantially along a longitudinal axis of the telecommunications cable. Each insulated wire of the plurality of twisted pairs of insulated wires includes a conductor and an insulation surrounding the conductor. The insulation includes a first insulation layer defining a plurality of channels disposed around a peripheral surface of the conductor. In addition, the insulation includes a second insulation layer disposed circumferentially around the first insulation layer. Moreover, the insulation includes a third insulation layer disposed circumferentially around the second insulation layer. Furthermore, the telecommunication cable includes a separator and a first layer defining the outer jacket of the telecommunication cable.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 18, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Andrew Kaczmarski, Darshana Bhatt, Avnish Dube
  • Patent number: 10557986
    Abstract: The present disclosure provides a few mode optical fiber (100). The few mode optical fiber (100) includes a core region (102). A core region (102) defined by a region around a central longitudinal axis (116) of the few mode optical fiber (100). In addition, the core region (102) has a first annular region (106) extended from central longitudinal axis (116) to radius r1, a second annular region (108) extended from radius r1 to radius r2, a third annular region (110) extended from radius r2 to radius r3, a fourth annular region (112) extended from radius r3 to radius r4 and a fifth annular region (114) extended from radius r4 to radius r5. Also, the few mode optical fiber (100) has a cladding defined by the sixth annular region (104) extended from radius r5 to radius r6.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 11, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Srinivas Reddy Munige, Anand Kumar Pandey
  • Patent number: 10553333
    Abstract: The present disclosure relates to a telecommunications cable. The telecommunications cable includes a plurality of twisted pairs of insulated conductors. The plurality of twisted pairs of insulated conductors extends substantially along a longitudinal axis of the telecommunications cable. In addition, the telecommunications cable includes a separator. The separator separates each twisted pair of insulated conductor of the plurality of twisted pairs of insulated conductors. Moreover, the telecommunications cable includes a first layer. The first layer surrounds the separator and the plurality of twisted pairs of insulated conductors along a length of the telecommunications cable. The separator is I-shaped filler. The separator is made of low smoke zero halogen material or MDPE. The first layer is made of low smoke zero halogen material, polyethylene or poly vinyl chloride. The first layer has a thickness in a range of about 0.4 millimeter-2.5 millimeters.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: February 4, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Andrew Kaczmarski, Darshana Bhatt
  • Patent number: 10535449
    Abstract: The present disclosure relates to an insulated conductor for a telecommunications cable. The insulated conductor includes a first surface surrounding a core region of the notched conductor. The first surface defines a plurality of grooves extending radially inward towards the second longitudinal axis of the insulated conductor. Each of the plurality of grooves comprises of a first groove area section and a second groove area section. The first groove area section and the second groove area section are in continuous contact. The insulated conductor includes an insulation layer circumferentially surrounding the conductor. The insulated conductor has a first diameter in a range of about 0.5 millimeters to 0.65 millimeters. The telecommunications cable includes, plurality of twisted pairs of insulated conductors, a separator and a cable jacket.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 14, 2020
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Andrew Kaczmarski, Darshana Bhatt, Aakar Shivankar, Aalap Shah