Patents Assigned to Surgisense Corporation
  • Patent number: 11517213
    Abstract: A system is provided that furnishes expert procedural guidance based upon patient-specific data gained from surgical instruments incorporating sensors on the instrument's working surface, one or more reference sensors placed about the patient, sensors implanted before, during or after the procedure, the patient's personal medical history, and patient status monitoring equipment. Embodiments include a system having a surgical instrument with a sensor for generating a signal indicative of a property of a subject tissue of the patient, which signal is converted into a current dataset and stored. A processor compares the current dataset with other previously stored datasets, and uses the comparison to assess a physical condition of the subject tissue and/or to guide a procedure being performed on the tissue.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: December 6, 2022
    Assignee: SURGISENSE CORPORATION
    Inventors: Jason Matthew Zand, Gregory Scott Fischer
  • Publication number: 20220287603
    Abstract: Apparatus, systems, and methods are provided that generate in vivo maps of oxygenation measurements of biological tissue. These may include surgical instruments and stand-alone imaging systems with incorporated oxygen sensing capability. Oxygenation maps can be determined via fluorescent or phosphorescent lifetime imaging of an injectable probe with an oxygen-dependent optical response. Probe configuration and methods and apparatus of injecting the probe into the tissue are provided. Methods and apparatus for temperature compensation of temperature-dependent lifetime measurements are provided to improve oxygenation measurement accuracy. Oxygen maps may be registered with visible light images to assist in assessing tissue viability or localize anomalies in the tissue.
    Type: Application
    Filed: October 21, 2021
    Publication date: September 15, 2022
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason Matthew Zand, Gregory Scott Fischer, Justin Thomas Knowles
  • Publication number: 20210338121
    Abstract: A surgical instrument may be configured to sense a light re-emitting probe to resolve tissue oxygenation, the surgical instrument including: an optical emitter configured to excite the light re-emitting probe within an absorption band of the light re-emitting probe; an optical detector configured to receive the re-emitted light from the probe; and a signal processor configured to resolve the tissue oxygenation based on the received light. The surgical instrument can be a surgical stapler anvil or a flexible substrate having a tissue interfacing surface. Further, a monitoring device may be configured to map oxygenation of a tissue containing a light re-emitting probe, the monitoring device including: an optical emitter configured to excite the light re-emitting probe; at least one optical detector configured to receive the re-emitted light from the probe; and a signal processor that is configured to resolve the tissue oxygenation at multiple points to generate an oxygen map.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason M. ZAND, Gregory S. FISCHER
  • Publication number: 20190282146
    Abstract: Apparatus, systems, and methods are provided that generate in vivo maps of oxygenation measurements of biological tissue. These may include surgical instruments and stand-alone imaging systems with incorporated oxygen sensing capability. Oxygenation maps can be determined via fluorescent or phosphorescent lifetime imaging of an injectable probe with an oxygen-dependent optical response. Probe configuration and methods and apparatus of injecting the probe into the tissue are provided. Methods and apparatus for temperature compensation of temperature-dependent lifetime measurements are provided to improve oxygenation measurement accuracy. Oxygen maps may be registered with visible light images to assist in assessing tissue viability or localize anomalies in the tissue.
    Type: Application
    Filed: October 19, 2018
    Publication date: September 19, 2019
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason Matthew Zand, Gregory Scott Fischer, Justin Thomas Knowles
  • Publication number: 20190282145
    Abstract: A surgical instrument may be configured to sense a light re-emitting probe to resolve tissue oxygenation, the surgical instrument including: an optical emitter configured to excite the light re-emitting probe within an absorption band of the light re-emitting probe; an optical detector configured to receive the re-emitted light from the probe; and a signal processor configured to resolve the tissue oxygenation based on the received light. The surgical instrument can be a surgical stapler anvil or a flexible substrate having a tissue interfacing surface. Further, a monitoring device may be configured to map oxygenation of a tissue containing a light re-emitting probe, the monitoring device including: an optical emitter configured to excite the light re-emitting probe; at least one optical detector configured to receive the re-emitted light from the probe; and a signal processor that is configured to resolve the tissue oxygenation at multiple points to generate an oxygen map.
    Type: Application
    Filed: October 12, 2018
    Publication date: September 19, 2019
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason M. ZAND, Gregory S. FISCHER
  • Patent number: 10231634
    Abstract: A system is provided that furnishes expert procedural guidance based upon patient-specific data gained from surgical instruments incorporating sensors on the instrument's working surface, one or more reference sensors placed about the patient, sensors implanted before, during or after the procedure, the patient's personal medical history, and patient status monitoring equipment. Embodiments include a system having a surgical instrument with a sensor for generating a signal indicative of a property of a subject tissue of the patient, which signal is converted into a current dataset and stored. A processor compares the current dataset with other previously stored datasets, and uses the comparison to assess a physical condition of the subject tissue and/or to guide a procedure being performed on the tissue.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: March 19, 2019
    Assignee: SURGISENSE CORPORATION
    Inventors: Jason Matthew Zand, Gregory Scott Fischer
  • Publication number: 20160310055
    Abstract: A surgical instrument may be configured to sense a light re-emitting probe to resolve tissue oxygenation, the surgical instrument including: an optical emitter configured to excite the light re-emitting probe within an absorption band of the light re-emitting probe; an optical detector configured to receive the re-emitted light from the probe; and a signal processor configured to resolve the tissue oxygenation based on the received light. The surgical instrument can be a surgical stapler anvil or a flexible substrate having a tissue interfacing surface. Further, a monitoring device may be configured to map oxygenation of a tissue containing a light re-emitting probe, the monitoring device including: an optical emitter configured to excite the light re-emitting probe; at least one optical detector configured to receive the re-emitted light from the probe; and a signal processor that is configured to resolve the tissue oxygenation at multiple points to generate an oxygen map.
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason M. ZAND, Gregory S. FISCHER
  • Patent number: 9420967
    Abstract: A surgical instrument may be configured to sense a light re-emitting probe to resolve tissue oxygenation, the surgical instrument including: an optical emitter configured to excite the light re-emitting probe within an absorption band of the light re-emitting probe; an optical detector configured to receive the re-emitted light from the probe; and a signal processor configured to resolve the tissue oxygenation based on the received light. The surgical instrument can be a surgical stapler anvil or a flexible substrate having a tissue interfacing surface. Further, a monitoring device may be configured to map oxygenation of a tissue containing a light re-emitting probe, the monitoring device including: an optical emitter configured to excite the light re-emitting probe; at least one optical detector configured to receive the re-emitted light from the probe; and a signal processor that is configured to resolve the tissue oxygenation at multiple points to generate an oxygen map.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: August 23, 2016
    Assignee: Surgisense Corporation
    Inventors: Jason M. Zand, Gregory S. Fischer
  • Patent number: 9204830
    Abstract: A system is provided that furnishes expert procedural guidance based upon patient-specific data gained from surgical instruments incorporating sensors on the instrument's working surface, one or more reference sensors placed about the patient, sensors implanted before, during or after the procedure, the patient's personal medical history, and patient status monitoring equipment. Embodiments include a system having a surgical instrument with a sensor for generating a signal indicative of a property of a subject tissue of the patient, which signal is converted into a current dataset and stored. A processor compares the current dataset with other previously stored datasets, and uses the comparison to assess a physical condition of the subject tissue and/or to guide a procedure being performed on the tissue.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 8, 2015
    Assignee: SURGISENSE CORPORATION
    Inventors: Jason Matthew Zand, Gregory Scott Fischer
  • Publication number: 20150282749
    Abstract: Apparatus, systems, and methods are provided that generate in vivo maps of oxygenation measurements of biological tissue. These may include surgical instruments and stand-alone imaging systems with incorporated oxygen sensing capability. Oxygenation maps can be determined via fluorescent or phosphorescent lifetime imaging of an injectable probe with an oxygen-dependent optical response. Probe configuration and methods and apparatus of injecting the probe into the tissue are provided. Methods and apparatus for temperature compensation of temperature-dependent lifetime measurements are provided to improve oxygenation measurement accuracy. Oxygen maps may be registered with visible light images to assist in assessing tissue viability or localize anomalies in the tissue.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 8, 2015
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason Matthew Zand, Gregory Scott Fischer, Justin Thomas Knowles
  • Publication number: 20140288386
    Abstract: A surgical instrument may be configured to sense a light re-emitting probe to resolve tissue oxygenation, the surgical instrument including: an optical emitter configured to excite the light re-emitting probe within an absorption band of the light re-emitting probe; an optical detector configured to receive the re-emitted light from the probe; and a signal processor configured to resolve the tissue oxygenation based on the received light. The surgical instrument can be a surgical stapler anvil or a flexible substrate having a tissue interfacing surface. Further, a monitoring device may be configured to map oxygenation of a tissue containing a light re-emitting probe, the monitoring device including: an optical emitter configured to excite the light re-emitting probe; at least one optical detector configured to receive the re-emitted light from the probe; and a signal processor that is configured to resolve the tissue oxygenation at multiple points to generate an oxygen map.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 25, 2014
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason M. ZAND, Gregory S. FISCHER
  • Publication number: 20120116185
    Abstract: A device and method in accordance with the invention for generating a signal indicative of a property of a subject tissue in contact with the working surface of a surgical instrument. The invention describes a sensing adjunct to surgical staplers. The adjunct can take the form of an optionally coupled accessory to a surgical stapler, or a stand-alone substitutive component acting to serve as a replacement for a component of the surgical stapler such as an anvil, housing or cartridge. Embodiments include a sensing anvil serving to act in place of a non-sensing surgical stapler anvil to monitor tissue properties of an anastomosis for the purpose of avoiding anastomotic failure.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Applicant: SURGISENSE CORPORATION
    Inventors: Jason Matthew ZAND, Gregory Scott Fischer
  • Patent number: 8118206
    Abstract: A device and method in accordance with the invention for generating a signal indicative of a property of a subject tissue in contact with the working surface of a surgical instrument. The invention describes a sensing adjunct to surgical staplers. The adjunct can take the form of an optionally coupled accessory to a surgical stapler, or a stand-alone substitutive component acting to serve as a replacement for a component of the surgical stapler such as an anvil, housing or cartridge. Embodiments include a sensing anvil serving to act in place of a non-sensing surgical stapler anvil to monitor tissue properties of an anastomosis for the purpose of avoiding anastomotic failure.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: February 21, 2012
    Assignee: Surgisense Corporation
    Inventors: Jason Matthew Zand, Gregory Scott Fischer
  • Publication number: 20090234248
    Abstract: A device and method in accordance with the invention for generating a signal indicative of a property of a subject tissue in contact with the working surface of a surgical instrument. The invention describes a sensing adjunct to surgical staplers. The adjunct can take the form of an optionally coupled accessory to a surgical stapler, or a stand-alone substitutive component acting to serve as a replacement for a component of the surgical stapler such as an anvil, housing or cartridge. Embodiments include a sensing anvil serving to act in place of a non-sensing surgical stapler anvil to monitor tissue properties of an anastomosis for the purpose of avoiding anastomotic failure.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 17, 2009
    Applicant: Surgisense Corporation
    Inventors: Jason Matthew Zand, Gregory Scott Fischer