Patents Assigned to Tahoe RF Semiconductor, Inc.
  • Patent number: 9509351
    Abstract: A method includes providing a highly linear front end in a Radio Frequency (RF) receiver, implementing a high Effective Number of Bits (ENOB) Analog to Digital Converter (ADC) circuit in the RF receiver, and sampling, through the high ENOB ADC circuit, at a frequency having harmonics that do not coincide with a desired signal component of an input signal of the RF receiver to eliminate spurs within a data bandwidth of the RF receiver. The input signal includes the desired signal component and an interference signal component. The interference signal component has a higher power level than the desired signal component. The method also includes simultaneously accommodating the desired signal component and the interference signal component in the RF receiver based on an increased dynamic range of the RF receiver and the high ENOB ADC circuit provided through the highly linear front end and the high ENOB ADC circuit.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 29, 2016
    Assignee: TAHOE RF SEMICONDUCTOR, INC.
    Inventors: Michael Joseph Shaw, Jonathan Lee Kennedy, Darrell Lee Livezey, Joy Laskar
  • Patent number: 9275690
    Abstract: A method includes forming a power control circuit through coupling a gate switch array between a buffer stage at an input of the power control circuit and an amplifier array including N amplifier stages in parallel to each other, with N>1. The method also includes coupling each of the N amplifier stages to a corresponding gate switch of the gate switch array, and controlling an output power of the power control circuit by switching one or more appropriate gate switches of the gate switch array to apply an input signal from the buffer stage to a corresponding one or more amplifier stages coupled to the one or more appropriate gate switches such that a maximum output power is achieved when all of the N amplifier stages are turned on and a minimum output power is achieved when only one amplifier stage is turned on.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: March 1, 2016
    Assignee: TAHOE RF SEMICONDUCTOR, INC.
    Inventors: Christopher T Schiller, Michael Joseph Shaw
  • Publication number: 20140030981
    Abstract: A method includes providing a highly linear front end in a Radio Frequency (RF) receiver, implementing a high Effective Number of Bits (ENOB) Analog to Digital Converter (ADC) circuit in the RF receiver, and sampling, through the high ENOB ADC circuit, at a frequency having harmonics that do not coincide with a desired signal component of an input signal of the RF receiver to eliminate spurs within a data bandwidth of the RF receiver. The input signal includes the desired signal component and an interference signal component. The interference signal component has a higher power level than the desired signal component. The method also includes simultaneously accommodating the desired signal component and the interference signal component in the RF receiver based on an increased dynamic range of the RF receiver and the high ENOB ADC circuit provided through the highly linear front end and the high ENOB ADC circuit.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: Tahoe RF Semiconductor, Inc.
    Inventors: MICHAEL JOSEPH SHAW, JONATHAN LEE KENNEDY, DARRELL LEE LIVEZEY, JOY LASKAR
  • Patent number: 8626098
    Abstract: A transconductance comparator includes a comparator having an output of a detector configured to sense an amplitude of an output of a Variable Gain Amplifier (VGA) of a receiver as a first input and a reference amplitude level as a second input. The comparator generates an error signal based on the first input and the second input. The transconductance comparator also includes a transconductance amplifier having a differential voltage input based on the error signal generated through the comparator and generating an output current. The transconductance amplifier includes current sources associated with programmable current limits thereof and differential pairs associated with the current sources, one or more of which is implemented with a size mismatch between transistors thereof to eliminate an offset error due to a mismatch between the current limits, thereby enabling programmability of an attack time and a decay time during automatic gain control of the VGA.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 7, 2014
    Assignee: Tahoe RF Semiconductor, Inc.
    Inventor: Darrell Lee Livezey