Patents Assigned to Tenneco Inc.
  • Patent number: 10774805
    Abstract: An igniter assembly comprising an ignition coil assembly connected to a firing end assembly by an extension, with a valve assembly disposed in a pressure chamber of the extension, is provided. The valve assembly includes a valve stem biased toward the ignition coil assembly by a spring to seal the pressure chamber. The valve assembly is used to evacuate contents from the pressure chamber by pressing the valve stem toward the spring and allowing contents of the pressure chamber to travel through and past the valve stem and out of the pressure chamber. The valve assembly is also used to fill the pressure chamber with an insulating medium by pressing the valve stem toward the spring and allowing the insulating medium to travel through and past the valve stem and into the pressure chamber after evacuating the contents out of the pressure chamber.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: September 15, 2020
    Assignee: Tenneco Inc.
    Inventors: Kristapher I. Mixell, Yusuf Esmail Neemuchwala, John E. Miller, James D. Lykowski, John Antony Burrows
  • Patent number: 10774781
    Abstract: A steel piston with anti-coking design features is provided. The piston includes an upper crown portion and a lower crown portion forming an outer cooling gallery therebetween. The outer cooling gallery is substantially closed except for an oil inlet, oil outlet, and optional oil passage(s) to a central cooling gallery. According to one embodiment, at least one anti-coking insert is disposed in the outer cooling gallery and sized to prevent escaping through the oil inlet or the oil outlet. For example, the insert(s) can comprise a helical coil, a plurality of steel balls, coil springs, or chips formed of polymer with abrasive filler. Alternatively, an outer gallery floor to the outer cooling gallery includes a plurality of anti-coking openings disposed sequentially in decreasing spaced relation from one another, or anti-coking openings with varying lengths.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: September 15, 2020
    Assignee: Tenneco, Inc.
    Inventors: Miguel Azevedo, Warran Boyd Lineton, Geoffrey Neil Ainsworth
  • Patent number: 10753310
    Abstract: A piston for an internal combustion engine is provided. The piston includes a body having a cylindrical outer surface with a ring belt region including an annular uppermost ring groove and a lower ring groove extending into the outer surface. A top land extends from the uppermost ring groove to an upper combustion surface. The body has a pair of pin bosses with pin bores aligned with one another along a pin bore axis. A first piston ring is disposed in the uppermost ring groove and a second piston ring is disposed in the lower ring groove. The body has an annular sealed cooling gallery with a cooling medium contained therein. The sealed cooling gallery is configured in substantial radial alignment between the first and second piston rings to provide optimal cooling to the ring belt region, top land and upper combustion surface.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: August 25, 2020
    Assignee: Tenneco Inc.
    Inventors: Miguel Azevedo, Keith Hampton
  • Patent number: 10738731
    Abstract: A galleryless steel piston for an internal combustion engine is provided. The piston has a monolithic piston body including an upper wall forming an upper combustion surface with first and second portions. The first portion extends annularly along an outer periphery of the upper wall and the second portion defines a combustion bowl. The piston further includes undercrown surface located directly opposite the combustion bowl with an exposed 2-dimensional surface area allowing for contact of cooling oil. The exposed 2-dimensional surface area ranges from 25 to 60 percent of a cross-sectional area defined by a maximum outer diameter of the piston body. To further enhance cooling, a portion of the undercrown surface is concave or convex, such that oil is channeled during reciprocation of the piston from one side to the opposite side of the piston.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: August 11, 2020
    Assignee: Tenneco Inc.
    Inventors: Jeff Riffe, Michael Weinenger
  • Patent number: 10731598
    Abstract: A vehicle internal combustion piston and method of construction thereof are provided. The piston includes piston body extending along a central longitudinal axis, having an upper combustion wall forming an upper combustion surface and an undercrown surface opposite the upper combustion surface. An annular ring belt region depends from the upper combustion surface, a pair of skirt panels depend from the ring belt region, and a pair of pin bosses depend from the undercrown surface to provide laterally spaced pin bores aligned along a pin bore axis for receipt of a wrist pin. The undercrown surface forms a central undercrown region, and a portion of either an open outer cooling gallery, a sealed outer cooling gallery, or an outer galleryless region. A coating including copper is applied to hot spots along the undercrown surface to mitigate the hot spots provide a more uniform temperature along the undercrown surface during operation.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: August 4, 2020
    Assignee: Tenneco Inc.
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Thomas Egerer, Gregory Salenbien, Neil Ainsworth
  • Patent number: 10714907
    Abstract: A firing tip for a corona igniter is provided. The firing tip includes a base formed of metal, such as nickel, and rivets formed of precious metal, such as iridium. The base includes indentations, and the rivets are disposed in the indentations of the base. The rivet has a melting point and/or wear resistance greater than the base. Typically, the indentations of the base include a concave surface and the rivets have a cylindrical shape matching the shape of the indentations. The rivets can be sharpened to a point. The rivets can include a first piece formed of precious metal and a second piece formed of nickel or nickel alloy, wherein an end of the first piece is welded to an end of the second piece, and the second piece is welded to the base. Alternatively, the rivets can be formed entirely of the precious metal.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: July 14, 2020
    Assignee: Tenneco Inc.
    Inventors: Kristapher I. Mixell, James D. Lykowski, Yusuf Esmail Neemuchwala
  • Patent number: 10704491
    Abstract: A piston for an internal combustion engine is provided. The piston includes a lower part joined to an upper part, for example by friction welding with inertia. The upper part presents a combustion surface and an undercrown surface. The piston also includes a cooling gallery surface provided by the upper part and the lower part. The cooling gallery surface surrounds a volume of space for containing a cooling media. The piston can include serrations in the cooling gallery surface and/or undercrown surface to increase surface area and thus reduce the temperature of the piston. The piston can also include shaped weld curls, instead of or in addition to the serrations, which also increase surface area and reduce the temperature of the piston.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: July 7, 2020
    Assignee: Tenneco Inc.
    Inventors: Eduardo Matsuo, Gregory Rudzik
  • Patent number: 10690247
    Abstract: A steel piston for coupling to a connecting rod and wrist pin is provided. The piston includes a body with an upper crown presenting a combustion surface for exposure to a combustion chamber. The upper crown presents an undercrown surface which is openly exposed as viewed from an underside of the piston and not bounded by a cooling gallery. The body includes a ring belt and pin bosses depending from the ring belt and presenting a pin bore for receiving the wrist pin. The body also includes ribs disposed along the undercrown surface. The body includes a ratio of compression height to outer diameter (CH/D) ranging from 34.8% to 42.0%. The piston also includes a low heat transfer coating on the combustion surface, and the low heat transfer coating has a thermal conductivity of about 0.20 to 0.80 W/m·K.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: June 23, 2020
    Assignee: Tenneco Inc.
    Inventors: Miguel Azevedo, Greg Salenbien, Andrew Stockwell
  • Patent number: 10648425
    Abstract: An aluminum piston including a cooling gallery with titled inner and outer side walls is provided. The piston comprises a ring belt with a ring grooves, and an iron insert is disposed in a top one of the ring grooves. To reduce stress and mass of the piston, material located under the iron insert is removed, so that the outer side wall of the cooling gallery is tilted toward the center axis. The inner side wall of the cooling gallery is tilted away from the center axis.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: May 12, 2020
    Assignee: Tenneco Inc.
    Inventors: Andrew J. Miller, Juan Gildemeister, Dawnelle Wielosinski
  • Patent number: 10618110
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: April 14, 2020
    Assignee: Tenneco Inc.
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, Jr.
  • Patent number: 10610984
    Abstract: A one-piece piston including a combustion bowl which is cast to its final form and includes at least one irregularity spaced from a central axis. The piston is initially fabricated of an upper crown member and a lower crown member, which are joined together. The piston is then chucked into a machine tool, such as a CNC lathe, which locates either the piston's top surface or a portion of the combustion bowl and establishes its location as a datum plane. It is this datum plane which serves as a reference location for subsequent machining operations of the piston.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 7, 2020
    Assignee: Tenneco Inc
    Inventors: Airton Martins, Carmo Ribeiro
  • Patent number: 10590884
    Abstract: A piston and method of construction is provided. The piston includes a top part fixed to a bottom part. The top part has an uppermost surface with annular inner and outer upper joining surfaces depending therefrom. The bottom part has a pair of pin bosses with pin bores aligned with one another along a pin bore axis; a pair of upwardly extending annular inner and outer lower joining surfaces and a combustion bowl wall. Inner and outer weld joints fix the inner and outer upper and lower joining surfaces to one another. An annular cooling gallery is formed laterally between the upper and lower joining surfaces. The inner weld joint joining the top part to the bottom part is located within the combustion bowl wall and configured to minimized the compression height of the piston.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: March 17, 2020
    Assignee: Tenneco Inc
    Inventors: Florin Muscas, Eduardo H. Matsuo
  • Patent number: 10584659
    Abstract: A piston for an internal combustion engine and method of construction is provided. The piston has a robust, lightweight monolithic piston body including an upper wall forming a combustion bowl depending radially inwardly from an annular, uppermost combustion surface. An undercrown surface is formed on an underside of the combustion bowl, with at least a portion of the undercrown surface being bounded by diametrically opposite skirt portions, pin bosses and strut portions connecting the skirt portions to the pin bosses. The bounded undercrown surface has an openly exposed surface area, as viewed looking along a central longitudinal axis along which the piston reciprocates, providing an expansive area against which oil being splashed or sprayed can come into direct contact with to enhance cooling the piston while in use. Through channels extending over upper regions of the pin bosses can be provided to further reduce weight and facilitate cooling.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: March 10, 2020
    Assignee: Tenneco Inc
    Inventors: Michael Weinenger, Jeffrey L. Riffe, Miguel Azevedo
  • Patent number: 10578073
    Abstract: An igniter, such as a corona igniter for an internal combustion engine, and a method of manufacturing the igniter, are provided. The igniter includes an insulator with enlarged upper and lower end regions extending axially beyond opposite ends of a constrained, reduced diameter region of a shell through passage. The enlarged lower end region of the insulator is disposed axially outwardly of a lower end of the shell. The insulator is hermetically sealed to the shell and is permanently fixed against being removed axially outwardly from the shell. The method can include conforming the shell to the contour of the insulator by plastically deforming the shell, or casting the shell about the insulator. Alternatively, separate pieces of metal can be disposed around the insulator to form the shell which is conformed to the insulator.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: March 3, 2020
    Assignee: Tenneco Inc.
    Inventors: James D. Lykowski, Paul William Phillips
  • Patent number: 10578050
    Abstract: A piston for a diesel engine is provided. The piston includes a thermal barrier coating applied to a crown formed of steel. A layer of a metal bond material is first applied to a combustion surface of the crown, followed by a gradient structure including a mixture of the metal bond material and a ceramic material, followed by a layer of the ceramic material. The ceramic material includes at least one of ceria, ceria stabilized zirconia, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating is applied by a thermal spray process or HVOF. The thermal barrier coating has a porosity of 2% by vol. to 25% vol., based on the total volume of the thermal barrier coating, a thickness of less than 1 mm, and a thermal conductivity of less than 1.00 W/m·K.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 3, 2020
    Assignee: Tenneco Inc.
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Greg Salenbien
  • Patent number: 10578014
    Abstract: A component for an engine is provided. The component includes a thermal barrier coating applied to a body portion formed of metal, such as steel or another ferrous or iron-based material. According to one embodiment, a bond layer of a metal is applied to the body portion, followed by a mixed layer of metal and ceramic with a gradient structure, and then optionally a top layer of metal. The thermal barrier coating can also include a ceramic layer between the mixed layer and top layer, or as the outermost layer. The ceramic includes at least one of ceria, ceria stabilized zirconia, yttria, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating can be applied by thermal spray. The thermal barrier coating preferably has a thickness less than 200 microns and a surface roughness Ra of not greater than 3 microns.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: March 3, 2020
    Assignee: Tenneco Inc.
    Inventor: Warran Boyd Lineton
  • Patent number: 10563695
    Abstract: A bushing formed of different alloys selected to accommodate different operating conditions is provided. For example, the bushing could include an iron-based alloy in a portion of the bushing exposed to lower temperatures, and a cobalt-based alloy in a portion of the bushing exposed to higher temperatures. The first and second alloys could be axially or radially aligned. The iron based alloy includes 10 to 30 wt % Cr, 0 to 21 wt % Ni, 0 to 10 wt % Mo, 0 to 5 wt % W, 0 to 3 wt % C, 0 to 4 wt % V, 0 to 20 wt % Co, and a balance of Fe; and the cobalt based alloy includes 10 to 30 wt % Cr, 5 to 21 wt % Ni, 0 to 10 wt % Mo, 0 to 10 wt % W, 0 to 3 wt % V, 0.5 to 3 wt % C, and a balance of Co.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: February 18, 2020
    Assignee: Tenneco Inc.
    Inventors: Leslie John Farthing, Jens Wellmann
  • Patent number: 10543535
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 28, 2020
    Assignees: Tenneco Inc., Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Patent number: 10539237
    Abstract: A static gasket and method of construction thereof is provided. The gasket includes a functional layer constructed of one type of metal having an opening bounded by an inner periphery an outer periphery. The gasket further includes a carrier layer constructed of a different metal than the functional layer. The carrier layer has an opening bounded by an inner periphery configured to receive the outer periphery of the functional layer in a line-to-line or loose fit. The functional layer is configured in substantially coplanar relation with the carrier layer with a first portion of the outer periphery of the functional layer being welded to a radially aligned first portion of the inner periphery of the carrier layer. A second portion of the outer periphery of the functional layer remains detached from a radially aligned second portion of the inner periphery of the carrier layer.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 21, 2020
    Assignee: Tenneco Inc.
    Inventors: Thomas W. Swasey, Carl Schenten, Mark Bowman, John Sas, Rolf Prehn, Carlos Santiago, Tim O'Keefe, Michael Shirilla, Thomas O. Zurfluh, Kyle T. Roberts
  • Patent number: 10533663
    Abstract: A static gasket and method of construction thereof is provided. The gasket includes a functional layer constructed of one type of metal having an opening bounded by an inner periphery an outer periphery. The gasket further includes a carrier layer constructed of a different metal than the functional layer. The carrier layer has an opening bounded by an inner periphery configured to receive the outer periphery of the functional layer in a line-to-line or loose fit. The functional layer is configured in substantially coplanar relation with the carrier layer with a first portion of the outer periphery of the functional layer being welded to a radially aligned first portion of the inner periphery of the carrier layer. A second portion of the outer periphery of the functional layer remains detached from a radially aligned second portion of the inner periphery of the carrier layer.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: January 14, 2020
    Assignee: Tenneco Inc.
    Inventors: Thomas W. Swasey, Carl Schenten, Mark Bowman, John Sas, Rolf Prehn, Carlos Santiago, Tim O'Keefe, Michael Shirilla, Thomas O. Zurfluh, Kyle T. Roberts