Patents Assigned to The Arizona Board of Regents
  • Publication number: 20240037394
    Abstract: A neural network accelerator architecture for multiple task adaptation comprises a volatile memory comprising a plurality of subarrays, each subarray comprising M rows and N columns of volatile memory cells; a source line driver connected to a plurality of N source lines, each source line corresponding to a column in the subarray; a binary mask buffer memory having size at least N bits, each bit corresponding to a column in the subarray, where a 0 corresponds to turning off the column for a convolution operation and a 1 corresponds to turning on the column for the convolution operation; and a controller configured to selectively drive each of the N source lines with a corresponding value from the mask buffer; wherein each column in the subarray is configured to store a convolution kernel.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 1, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Deliang Fan, Fan Zhang, Li Yang
  • Publication number: 20240035014
    Abstract: Described herein are polyhedral, three-dimensional tunable nanocages assembled with a multimeric protein covalently linked to a polynucleotide handle and a DNA origami base assembly including sequences complementary to the polynucleotide handles, wherein the polynucleotide handle and the complementary sequences hybridize to for double-stranded DNA helices.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Nicholas Stephanopoulos, Yang Xu
  • Patent number: 11885968
    Abstract: Compact occlusion-capable optical see-through head mounted displays (OCOST-HMDs) are described having a double-wrapped path and capable of rendering per-pixel mutual occlusion, and correct see-through viewing perspective or a pupil-matched viewing between the virtual and real views. An example device includes a polarizer, a polarizing beam splitter, an objective lens, a spatial light modulator (SLM), an eyepiece lens, a quarter wave plate, and a reflective optical element configured to reflect the light that is incident thereupon in a first direction, and to transit the light received from a microdisplay that is incident thereupon from a second direction. The components form a first double-pass configurations that allow the light that passes through the objective to reflect from the SLM and propagate again through the objective, and a second double-pass configuration that allows the light that passes through the eyepiece to reflect from the reflective optical element and propagate again through the eyepiece.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 30, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Hong Hua, Austin Wilson
  • Patent number: 11884925
    Abstract: Provided herein are CRISPR-based synthetic repression systems as well as methods and compositions using the synthetic repression systems to treat septicemia, an adverse immune response in a subject and Waldenström macroglobulinemia.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 30, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Samira Kiani, Mo Reza Ebrahimkhani, Farzaneh Moghadam
  • Publication number: 20240024685
    Abstract: The present disclosure provides an implantable optogenetic stimulation device. In one embodiment the device includes a housing and an optoelectronic stimulation circuit for light delivery for optogenetic stimulation. The stimulation circuit includes energy harvesting circuitry to receive radio frequency (RF) energy; one or more capacitor storage elements to store energy associated with the RF energy; a light emitting diode (LED) to generate a light source for optogenetic stimulation at a selected frequency and duty cycle; and controller circuitry to discharge the one or more capacitor storage elements at a selected duty cycle to cause the LED to generate pulsed light at the selected duty cycle with energy requirement above the peak power capability of the RF harvesting circuit.
    Type: Application
    Filed: July 24, 2023
    Publication date: January 25, 2024
    Applicant: Arizona Board of Regents
    Inventor: Philipp GUTRUF
  • Patent number: 11878988
    Abstract: A series of functionalized imidazophenthridine analogue-based blue phosphorescent emitters have been designed, where bulky substituents (e.g., tetrabutyl, phenyl, mesityl, triisopropylbenzene, etc.) are introduced on an imidazophenthridine fragment of the emitters. Bulky substituents may suppress potential excimer formation, as well as improve the solubility of the complexes. This class of emitters may be utilized in luminescent labels, emitters for organic light emitting devices, and lighting applications.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jian Li, Linyu Cao
  • Patent number: 11880984
    Abstract: Tracking-based motion deblurring via coded exposure is provided. Fast object tracking is useful for a variety of applications in surveillance, autonomous vehicles, and remote sensing. In particular, there is a need to have these algorithms embedded on specialized hardware, such as field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs), to ensure energy-efficient operation while saving on latency, bandwidth, and memory access/storage. In an exemplary aspect, an object tracker is used to track motion of one or more objects in a scene captured by an image sensor. The object tracker is coupled with coded exposure of the image sensor, which modulates photodiodes in the image sensor with a known exposure function (e.g., based on the object tracking). This allows for motion blur to be encoded in a characteristic manner in image data captured by the image sensor. Then, in post-processing, deblurring is performed using a computational algorithm.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Suren Jayasuriya, Odrika Iqbal, Andreas Spanias
  • Patent number: 11879830
    Abstract: An imaging system and method for detecting a target in a sample. The imaging system includes a lens-free holographic microscope having a light source in a first plane spaced above an image sensor. The image sensor extends in a second plane. The system also includes a microfluidic chip positioned between the light source and the image sensor. The microfluidic chip extends in a third plane, which is parallel to the second plane. There is at least one chamber in the microfluidic chip configured to receive a sample solution with a target. The system also has a plurality of functionalized beads positioned within the at least one chamber in the microfluidic chip. Any two of the plurality of functionalized beads have an affinity for binding together when exposed to the target in the sample solution.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Zhen Xiong, Euan McLeod
  • Patent number: 11878023
    Abstract: Provided herein are compositions and methods for treating pulmonary hypertension. In particular, provided herein are dry powder formulations of fasudil for delivery to the lung.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Heidi M. Mansour, Stephen Black, Priyadarshini Muralidharan
  • Publication number: 20240019429
    Abstract: Provided herein are methods of determining binding kinetics of a ligand. In some embodiments, the methods include contacting the ligand with a first surface of a substrate, which first surface comprises an electrically conductive coating and a population of receptors connected to the first surface via one or more linker moieties, wherein the receptors bind, or are capable of binding, to the ligand, applying an alternating current electric field to the substrate to induce the receptors to oscillate proximal to the first surface of the substrate, and detecting changes in oscillation amplitudes of the receptors over a duration. Related receptor oscillator array devices, systems and computer readable media are also provided.
    Type: Application
    Filed: July 10, 2023
    Publication date: January 18, 2024
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Shaopeng WANG, Guangzhong MA, Xiaoyan ZHOU
  • Publication number: 20240020735
    Abstract: Various embodiments of systems and methods for cross media joint friend and item recommendations are disclosed herein.
    Type: Application
    Filed: February 24, 2023
    Publication date: January 18, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Kai Shu, Suhang Wang, Jiliang Tang, Yilin Wang, Huan Liu
  • Patent number: 11876303
    Abstract: A multichip system includes a plurality of processor chips each having one or more cores and a plurality of antenna module for establishing interchip wireless communication. Each antenna module is disposed on a chip. At least one antenna module includes an antenna element array and a Butler matrix. The antenna element array includes n circular patch antenna elements for 360° end-fire scanning, where n is equal to 4 or a multiple thereof. The Butler matrix has n/4 submatrices. Each submatrix include two input 90° hybrids each having two outputs and two inputs for selectively receiving signals from a transceiver. The Butler matrix also includes two output 90° hybrids each having two outputs and two inputs. The two inputs of each output 90° hybrid are coupled to an output of different ones of the input 90° hybrids. Each output of the output 90° hybrids are coupled to a different antenna element.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: January 16, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Prabhat Baniya, Kathleen L. Melde
  • Patent number: 11875910
    Abstract: An optical apparatus is provided for manipulating light from x-ray sources (e.g., free electron lasers). In some embodiments, the optical apparatus includes a first capillary optic having a first longitudinal axis and a second capillary optic having a second longitudinal axis that is angled with respect to the first longitudinal axis. The second capillary optic is positioned to receive light directly from the first capillary optic.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: January 16, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventor: William Graves
  • Patent number: 11875701
    Abstract: An adaptive force guidance system for laparoscopic surgery skills training includes self-adjusting fuzzy sliding mode controllers and switching mode controllers to provide proper force feedback. Using virtual fixtures, the system restrictS motions and/or guide a trainee to navigate a surgical instrument in a 3D space in a manner that mimics a human instructor who would teach trainees by holding their hands. The self-adjusting controllers incorporate human factors such as different force sensitivity and proficiency level.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: January 16, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Minsik Hong, Jerzy W Rozenblit
  • Patent number: 11876565
    Abstract: The present disclosure is directed to systems and methods of providing the next generation of quantum enabled cyber security systems. Such systems include a quantum network of satellites that will provide global coverage. The quantum satellite network includes quantum subnetworks comprised of LEO satellites. Some of these LEO satellite-based quantum subnetworks are connected to a subnetwork of MEO satellites. The MEO satellite subnetworks may then be interconnected to the global network of GEO satellites. The LEO/MEO satellites may also be used to interconnect terrestrial quantum networks. Each quantum communication subnetwork may be based on the cluster state concept.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: January 16, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventor: Ivan Djordjevic
  • Patent number: 11875501
    Abstract: Disclosed are methods and systems that include obtaining at least one image of a dendritic structure, analyzing the at least one image to identify one or more features associated with the dendritic structure, and determining a numerical value associated with the dendritic structure based on the one or more features.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: January 16, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventor: Michael N. Kozicki
  • Patent number: 11865508
    Abstract: Described herein are in situ synthesized arrays and methods of making the them, wherein array signal sensitivity and robustness is enhanced by carrying out conditioning steps and/or generating linkers during synthesis. An array comprises a surface with a collection of features, wherein the features comprise molecules or polymers attached to the surface. In certain embodiments of the invention, carrying out conditioning steps during array synthesis can yield arrays with improved signal. In other embodiments, linkers are synthesized on the array surface prior to synthesis of functional molecules, wherein increasing linker length can correspond to an improvement in the signal generated by the array.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 9, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Neal Woodbury, Zhang-Gong Zhao
  • Patent number: 11865174
    Abstract: The disclosure relates to vaccination compositions, for example, against human papillomavirus, Zika virus, and flu virus. The disclosure also relates to vectors for producing the virus-like particles and immune complex platforms of the vaccination compositions.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 9, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Hugh Mason, Andrew Diamos, Mary Pardhe, Brandon Favre
  • Patent number: 11869852
    Abstract: A physical unclonable functions (PUF) device including a first copper electrode, a second electrode, and a silicon oxide layer positioned directly between the first copper electrode and the second electrode; a method of producing a PUF device; an array comprising a PUF device; and a method of generating a secure key with a plurality of PUF devices.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: January 9, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Michael Kozicki, Wenhao Chen
  • Patent number: 11867713
    Abstract: An optomechanical inertial reference mirror combines an optomechanical resonator with a reflector that serves as an inertial reference for an atom interferometer. The optomechanical resonator is optically monitored to obtain a first inertial measurement of the reflector that features high bandwidth and high dynamic range. The atom interferometer generates a second inertial measurement of the reflector that features high accuracy and stability. The second inertial measurement corrects for drift of the first inertial measurement, thereby resulting in a single inertial measurement of the reflector having high bandwidth, high dynamic range, excellent long-term stability, and high accuracy. The reflector may be bonded to the resonator, or formed directly onto a test mass of the resonator. With a volume of less than one cubic centimeter, the optomechanical inertial reference mirror is particularly advantageous for portable atomic-based sensors and systems.
    Type: Grant
    Filed: February 15, 2020
    Date of Patent: January 9, 2024
    Assignees: Arizona Board of Regents on Behalf of The University of Arizona, Leibniz Universität Hannover
    Inventors: Felipe Guzmán, Ernst Maria Rasel, Dennis Schlippert