Patents Assigned to The Board of Trustees of University of Illinois
  • Patent number: 11699239
    Abstract: An image processing method includes defining relations between entities of a target of which a motion is to be predicted from an image of a first time point based on a feature vector of the entities, estimating a dynamic interaction between the entities at the first time point based on the defined relations between the entities, predicting a motion of the entities changing at a second time point based on the estimated dynamic interaction, and outputting a result to which the motion predicted at the second time point is applied.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: July 11, 2023
    Assignees: The Board of Trustees of the University of Illinois (Urbana, IL), Samsung Electronics Co., Ltd.
    Inventors: Alexander Schwing, Colin Graber, Raymond Yeh, Jihye Kim, Jaejoon Han
  • Patent number: 11697944
    Abstract: A method to strengthen or repair concrete and other structures comprises securing a plate having a shape memory alloy (SMA) wire embedded therein to a localized region of a structure. The SMA wire has a deformed shape configured for self-anchorage within the plate. The SMA wire is heated at or above an austenite transformation temperature, and the SMA wire resists shape recovery and remains self-anchored within the plate. Accordingly, a compressive force is generated within the SMA wire and transferred to the plate. At an interface between the plate and the localized region of the structure, the compressive force is transmitted from the plate to the structure, thereby providing localized prestressing of the structure.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: July 11, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventor: Bassem Andrawes
  • Patent number: 11690897
    Abstract: This invention relates to methods of using salt inducible kinase inhibitors to enhance female fertility.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 4, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventor: Carlos Stocco
  • Patent number: 11695382
    Abstract: A method includes depositing a first metal layer on a semiconductor substrate; etching the first metal layer to form a first electrode having a first lead; depositing a piezoelectric layer on the semiconductor substrate and first electrode; etching the piezoelectric layer to a shape of the gyrator to be formed within the circulator; depositing a second metal layer on the piezoelectric layer; etching the second metal layer to form a second electrode having a second lead, the second electrode being positioned opposite the first electrode, wherein the first lead and the second lead form an electrical port; depositing a magnetostrictive layer on the second electrode; etching the magnetostrictive layer to approximately the shape of the piezoelectric layer; depositing a third metal layer on the magnetostrictive layer; and etching the third metal layer to form a metal coil that has a gap on one side to define a magnetic port.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Songbin Gong, Ruochen Lu, Tomas Manzaneque Garcia, Cheng Tu, Daniel Shoemaker, Chengxi Zhao
  • Patent number: 11691967
    Abstract: Disclosed herein are antibacterial compounds that accumulate in Gram-negative bacteria, methods of preparing the compounds, and methods of using the compounds to inhibit or kill microbes, and methods of treating microbial infections, such as Gram-negative bacterial infections. Compounds selected for conversion to potential Gram-negative antibacterial compounds were identified based on compounds having low globularity and low flexibility. Amine substituents were then strategically added to the selected compounds to provide compounds having antibacterial activity against Gram-negative bacteria.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul J. Hergenrother, Emily Jane Geddes, Bryon Shane Drown, Stephen E. Motika, Erica Nicole Parker
  • Patent number: 11693180
    Abstract: An apparatus such as an optical modulator includes a buried oxide layer is disposed on a substrate. A microring resonator and an optical waveguide are disposed on the buried oxide layer and within a bonded semiconductor layer. The optical waveguide is optically coupled to the microring resonator and inputs a first optical wave into the microring resonator. An oxide layer is deposited on top of the optical waveguide and the microring resonator. A set of electrodes is disposed adjacent to the microring resonator, and in response to an electrical signal, the set of electrodes modulates the first optical wave into a modulated optical wave of transverse magnetic polarization within the microring resonator and outputs the modulated optical wave to the optical waveguide.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Meisam Bahadori, Songbin Gong, Lynford L. Goddard
  • Patent number: 11692271
    Abstract: A method includes coating, via chemical vapor deposition, electronics disposed on a printed circuit board (PCB) with an electrical insulation coating of between one micron to 25 microns. The method further include depositing, on the electrical insulation coating, a metallic nano-layer comprising a porous metallic nano-structure. The method further includes, after the coating and the depositing, immersing the PCB in a water-based fluid to cool the electronics while the electronics are powered on.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Nenad Miljkovic, Thomas Foulkes, Patrick Birbarah, Tarek Gebrael, Andrew Stillwell, Robert Pilawa-Podgurski
  • Patent number: 11690160
    Abstract: The invention provides a microplasma photonic crystal for reflecting, transmitting and/or storing incident electromagnetic energy includes a periodic array of elongate microtubes confining microplasma therein and having a column-to-column spacing, average electron density and plasma column diameter selected to produce a photonic response to the incident electromagnetic energy entailing the increase or suppression of crystal resonances and/or shifting the frequency of the resonances. The crystal also includes electrodes for stimulating microplasma the elongated microtubes Electromagnetic energy can be interacted with the periodic array of microplasma to reflect, transmit and/or trap the incident electromagnetic energy.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: June 27, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Peng Sun, Wenyuan Chen, Yin Huang
  • Publication number: 20230197099
    Abstract: Improved systems and methods are provided herein for extracting target speech from audio signals that can contain masking speech or other unwanted noise content. These systems and methods include detection of target speech in an input signal by detecting elevated frequency content in the signal above a threshold frequency. Portions of the signal determined to contain such elevated high frequency content are then used to generate audio filters to extract target speech from subsequently-obtained audio signals. This can include performing non-negative matrix factorization to determine a set of basis vectors to represent noise content in the spectral domain and then using the set of basis vectors to decompose subsequently-obtained audio signals into noise signals that can then be removed from the audio signals.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 22, 2023
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Brian B Monson, Rohit M Ananthanarayana
  • Publication number: 20230191743
    Abstract: A passive thermal management system and methods of using a thermoresponsive hydrogel coating configured to autonomously switch between a heating state and a cooling state based on ambient temperature. At temperature greater than a lower critical solution temperature of the thermoresponsive hydrogel, the thermoresponsive hydrogel coating becomes solar reflective and has enhanced radiative cooling ability to achieve daytime radiative cooling. At temperatures less than the lower critical solution temperature, the thermoresponsive hydrogel coating becomes transparent to facilitate absorption of solar radiation by sun absorber.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc, The Board of Trustees of the University of Illinois
    Inventors: Shailesh N. Joshi, Dajie Xie, Paul Braun
  • Publication number: 20230193235
    Abstract: The modified polypeptides include at least one amino acid substitution that allows the polypeptide to bind better to the S surface glycoprotein of coronaviruses that use ACE2 as a cell entry receptor, either through direct increases in affinity or through improved folding and expression of ACE2. Use of the modified ACE2 polypeptides for inhibiting CoV entry, replication and/or spread, for pre-exposure and post-exposure CoV prophylaxis, and for treating a CoV infection (e.g. COVTD-19), is also described.
    Type: Application
    Filed: March 16, 2021
    Publication date: June 22, 2023
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Erik Procko, Asrar Malik, Jalees Rehman, Lianghui Zhang, Shiqin Xiong
  • Publication number: 20230183252
    Abstract: New synthetic methods to provide access to previously unexplored functionality at the C8 position of substituted imidazo[5,1-d][1,2,3,5]tetrazines of Formula I. Through synthesis and evaluation of a suite of compounds with a range of aqueous stabilities (from 0.5 to 40 hours), a predictive model for imidazotetrazine hydrolytic stability based on the Hammett constant of the C8 substituent was derived. Promising compounds were identified that possess activity against a panel of GBM cell lines, appropriate hydrolytic and metabolic stability, and brain-to-serum ratios dramatically elevated relative to TMZ, leading to lower hematological toxicity profiles and superior activity to TMZ in a mouse model of GBM.
    Type: Application
    Filed: December 16, 2022
    Publication date: June 15, 2023
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Timothy M. FAN, Riley L. SVEC
  • Publication number: 20230184767
    Abstract: Methods of detecting presence of a virus in a sample are provided, the method including contacting the sample with a solid state nanopore comprising a plurality of virus-specific aptamers and measuring a current-voltage curve in the solid state nanopore, wherein a decrease in the current indicates presence of the virus in the sample. Solid state nanopores comprising a plurality of virus-specific aptamers covalently linked to the interior of the solid state nanopore are also provided. Membranes including a plurality of solid state nanopores including a plurality of covalently attached virus-specific aptamers and kits and systems with a membrane including a plurality of solid state nanopores including a plurality of covalently attached virus-specific aptamers are also provided.
    Type: Application
    Filed: May 19, 2021
    Publication date: June 15, 2023
    Applicants: The Board of Trustees of the University of Illinois, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cientificas y Tecnicas
    Inventors: Yi Lu, Ana Sol Peinetti, Omar Azzaroni
  • Patent number: 11673866
    Abstract: 4-Hydroxyphenyl-2H-indazol-5-ol compounds are estrogen receptor beta ligands that have immunomodulatory properties and increase oligodendrocyte survival, differentiation, and remyelination. The compounds, compositions, and kits are useful in the treatment of multiple sclerosis and endometriosis.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 13, 2023
    Assignees: The Board of Trustees of the University of Illinois, The Regents of the University of California
    Inventors: John A. Katzenellenbogen, Seema K. Tiwari-Woodruff, Sung Hoon Kim, Benita Katzenellenbogen
  • Publication number: 20230175021
    Abstract: The present disclosure provides genetically engineered microorganisms for the simultaneous fermentation of pentose and hexose sugars, for example, glucose and xylose. The microorganisms can be modified to express AtSWEET polypeptides, LST1 polypeptides, mutants thereof, homologs thereof or combinations thereof. Also provided are methods of co-fermenting hexose and pentose sugars, methods of increasing the conversion of lignocellulosic biomass via microbial fermentation, and methods of generating biofuel.
    Type: Application
    Filed: April 9, 2021
    Publication date: June 8, 2023
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Yong-Su JIN, Nurzhan KUANYSHEV, Jing-Jing LIU, Anshu DEEWAN, Christopher V. RAO, Balaji PANNEERSELVAM, Diwakar SHUKLA, Sujit JAGTAP
  • Patent number: 11667621
    Abstract: A genus of proteolysis-targeting chimeras (PROTACs)-type compounds/antiestrogens has now been found that act as selective estrogen receptor degraders (SERDs) and estrogen receptor antagonists by degrading and antagonizing ERa in breast cancer cells. The compounds are of the following genus: The compounds described herein exhibit anti-proliferative effects, and are potentially useful, alone or in combination with other therapies, for the treatment of breast cancer. In general, these compounds combine a tight binding ERa targeting ligand tethered to a recognition motif or degron. Once bound, the degron recruits destructive cellular components and the targeted receptor (i.e., ERa) is degraded (i.e., destroyed) or antagonized.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: June 6, 2023
    Assignees: STEVENS INSTITUTE OF TECHNOLOGY, THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, MEMORIAL SLOAN-KETTERING CANCER CENTER
    Inventors: Abhishek Sharma, Sarat Chandarlapaty, Lucia Wang, Shengjia Lin, Weiyi Toy, John Katzenellenbogen
  • Patent number: 11667970
    Abstract: Various methods and devices for spatial molecular analysis from tissue is provided. For example, a method of spatially mapping a tissue sample is provided with a microarray having a plurality of wells, wherein adjacent wells are separated by a shearing surface; overlaying said microarray with a tissue sample; applying a deformable substrate to an upper surface of said tissue sample; applying a force to the deformable substrate, thereby forcing underlying tissue sample into the plurality of wells; shearing the tissue sample along the shearing surface into a plurality of tissue sample islands, with each unique tissue sample island positioned in a unique well; and imaging or quantifying said plurality of tissue sample islands, thereby generating a spatial map of said tissue sample. The imaging and/or quantifying may use a nucleic acid amplification technique.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: June 6, 2023
    Assignees: The Board of Trustees of the University of Illinois, Mayo Foundation for Medical Education and Research
    Inventors: Rashid Bashir, Anurup Ganguli, Farhad Kosari
  • Patent number: 11664093
    Abstract: Catalyst design in asymmetric reaction development has traditionally been driven by empiricism, wherein experimentalists attempt to qualitatively recognize structural patterns to improve selectivity. Machine learning algorithms and chemoinformatics can potentially accelerate this process by recognizing otherwise inscrutable patterns in large datasets. Herein we report a computationally guided workflow for chiral catalyst selection using chemoinformatics at every stage of development. Robust molecular descriptors that are agnostic to the catalyst scaffold allow for selection of a universal training set on the basis of steric and electronic properties. This set can be used to train machine learning methods to make highly accurate predictive models over a broad range of selectivity space. Using support vector machines and deep feed-forward neural networks, we demonstrate accurate predictive modeling in the chiral phosphoric acid-catalyzed thiol addition to N-acylimines.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: May 30, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Scott E. Denmark, Andrew F. Zahrt, Jeremy J. Henle, Brennan T. Rose, Yang Wang, William T. Darrow
  • Publication number: 20230158019
    Abstract: The discovery of mutant or fusion kinases that drive oncogenesis, and the subsequent approval of specific inhibitors for these enzymes, has been instrumental in the management of some cancers. However, acquired resistance remains a significant problem in the clinic, limiting the long-term effectiveness of most of these drugs. Herein is demonstrated a strategy to overcome this resistance through drug-induced MEK cleavage (via direct procaspase-3 activation) combined with targeted kinase inhibition. This combination effect is shown to be general across diverse tumor histologies (melanoma, lung cancer, and leukemia) and driver mutations (mutant BRAF or EGFR, fusion kinases EML4-ALK and BCR-ABL). Caspase-3-mediated degradation of MEK kinases results in sustained pathway inhibition and substantially delayed or eliminated resistance in cancer cells in a manner superior to combinations with MEK inhibitors.
    Type: Application
    Filed: November 28, 2022
    Publication date: May 25, 2023
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Jessie PEH, Matthew BOUDREAU
  • Patent number: 11654429
    Abstract: A sample carrier may include a sample preparation module and an amplification module. A sample mixes with a lysis medium and a nucleic acid amplification medium in the sample preparation module and then flows into a plurality of microfluidic chambers in the amplification module. The microfluidic chambers have disposed therein primers configured to initiate amplification of one or more target nucleic acid sequences corresponding to one or more pathogens. The sample carrier is inserted into an apparatus that includes a plurality of Sight sources and a camera. The light sources illuminate the microfluidic chambers with excitation light, a fluorophore emits fluorescence light indicative of nucleic acid amplification in response to the excitation-light, and the camera captures images of the microfluidic chambers. A target nucleic acid sequence in the sample is indicated by the images showing an increasing fluorescence in a microfluidic chamber that has the primers for that sequence.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 23, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brian T. Cunningham, Rashid Bashir, Anurup Ganguli, Akid Ornob, Gregory Damhorst, Hojeong Yu, Weili Chen, Fu Sun