Patents Assigned to The Brigham and Women's Hospital, Inc.
  • Patent number: 11971404
    Abstract: The present disclosure provides a system comprising a communication interface and computer for assigning a label to the biomolecule fingerprint, wherein the label corresponds to a biological state. The present disclosure also provides a sensor arrays for detecting biomolecules and methods of use. In some embodiments, the sensor arrays are capable of determining a disease state in a subject.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 30, 2024
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Omid Farokhzad, Morteza Mahmoudi, Claudia Corbo
  • Patent number: 11951156
    Abstract: In some aspects, the invention teaches pharmaceutical compositions that include a TGF-? ligand trap, and methods of using a TGF-? ligand trap to treat, prevent, or reduce the progression rate of pulmonary hypertension (PH). The invention also provides methods of using a TGF-? ligand trap to treat, prevent, or reduce the progression rate of a variety of conditions including, but not limited to, pulmonary vascular remodeling, pulmonary fibrosis, right ventricular hypertrophy, diseases associated with excessive TGF-? signaling, diseases associated with excessive GDF15 signaling, and diseases associated with excessive PAI-1 signaling. The invention further provides methods of using a TGF-? ligand trap to reduce right ventricular systolic pressure in a subject.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: April 9, 2024
    Assignees: THE BRIGHAM AND WOMEN'S HOSPITAL, INC., ACCELERON PHARMA, INC.
    Inventors: Paul B. Yu, Asya Grinberg, Dianne S. Sako, Roselyne Castonguay, Rita Steeves, Ravindra Kumar
  • Publication number: 20240108241
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the residence articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the residence article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the residence article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the residence articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the residence article includes dimensions configured for transesophageal retrieval. In some cases, the residence articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Application
    Filed: December 15, 2023
    Publication date: April 4, 2024
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., The General Hospital Corporation
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Malvika Verma, Feyisope Eweje, Christoph Winfried Johannes Steiger, Junwei Li, Nhi Phan, Hen-Wei Huang, Jacqueline Chu, John Ashraf Fou Salama
  • Patent number: 11946064
    Abstract: Described herein are compositions and methods for treating a disease in a subject by administering delivery vectors that express artificial microRNAs, artificial microRNA clusters, and/or a combination of microRNA clusters and associated non-coding RNAs to the subject. Also described herein are methods for preparing artificial microRNAs and artificial microRNA clusters.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 2, 2024
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Pierpaolo Peruzzi, Ennio Antonio Chiocca
  • Patent number: 11946846
    Abstract: A system and method for sorting sperm is provided. The system includes a housing and a microfluidic system supported by the housing. The system also includes an inlet providing access to the microfluidic system to deliver sperm to the microfluidic system and an outlet providing access to the microfluidic system to harvest sorted sperm from the microfluidic system. The microfluidic system provides a flow path for sperm from the inlet to the outlet and includes at least one channel extending from the inlet to the outlet to allow sperm delivered to the microfluidic system through the inlet to progress along the flow path toward the outlet. The microfluidic system also includes a filter including a first plurality of micropores arranged in the flow path between the inlet and the outlet to cause sperm traveling along the flow path to move against through the filter and gravity to reach the outlet.
    Type: Grant
    Filed: September 13, 2023
    Date of Patent: April 2, 2024
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Utkan Demirci, Waseem Asghar
  • Patent number: 11939616
    Abstract: The present disclosure provides, inter alia, compositions and methods for enforcing a pattern of cell surface fucosylated lactosaminyl glycans on a human cell. In certain embodiments, the compositions and/or methods utilize one or more members of the ?(1,3)-fucosyltransferase family. In certain embodiments, a process for custom-modifying a fucosylated lactosaminyl glycan on a human cell is disclosed.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: March 26, 2024
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventor: Robert Sackstein
  • Publication number: 20240093156
    Abstract: The disclosure provides methods and compositions for reprogramming fibroblasts into limb progenitors.
    Type: Application
    Filed: August 15, 2023
    Publication date: March 21, 2024
    Applicants: President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Clifford J. Tabin, Yuji Atsuta, Alan R. Rodrigues, ChangHee Lee, Olivier Pourquie
  • Patent number: 11926809
    Abstract: Systems and methods are provided for provided for automatic evaluation of sperm morphology. An image of a semen sample is obtained, and at least a portion of the image is provided to a convolutional neural network classifier. The convolutional neural network classifier evaluates the portion of the image to assign to the portion of the image a set of likelihoods that the portion of the image belongs to a plurality of output classes representing the morphology of sperm within the portion of the image. A metric is assigned to the semen sample based on the likelihoods assigned by the convolutional neural network.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 12, 2024
    Assignee: BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Hadi Shafiee, Manoj Kumar Kanakasabapathy, Prudhvi Thirumalaraju
  • Patent number: 11926062
    Abstract: A continuum robot having at least two independently manipulateable bendable section for advancing the robot through a passage, without contacting fragile elements within the passage, wherein the robot incorporates control algorithms that enable the continuum robot to operate and advance into the passage, as well as the systems and procedures associated with the continuum robot and said functionality.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: March 12, 2024
    Assignees: Canon U.S.A., Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Fumitaro Masaki, Franklin King, Nobuhiko Hata, Takahisa Kato
  • Publication number: 20240076736
    Abstract: The disclosure provides compositions and methods for characterizing the genome and transcriptome at a single cell level. In some embodiments, the method provides for the characterization of CRISPR editing outcomes and phenotypes, as well as other alterations in polynucleotide sequences, particularly in primary cells.
    Type: Application
    Filed: October 25, 2023
    Publication date: March 7, 2024
    Applicant: The Brigham and Women's Hospital, Inc.
    Inventors: Yuriy BAGLAENKO, Soumya RAYCHAUDHURI
  • Patent number: 11918360
    Abstract: The present disclosure provides diagnostic methods for evaluating a urinary bladder and methods of enhancing the visibility of the bladder from outside of a patient. The method includes introducing urinary catheter having a proximal end and a distal end into a patient's urinary bladder by way of the urethra, the urinary catheter including an outer tubular member including an inflatable balloon disposed thereon, and a visualization stylet that is slidably disposable within a passage defined in the outer tubular member. The method further includes inflating the inflatable member inside of the bladder, inflating the bladder with a liquid to enhance visualization of an inner surface of the bladder, illuminating a light source through the inflatable member to illuminate the inner surface of the bladder, and visualizing an inner portion of the bladder using the visualization stylet.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 5, 2024
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventor: Jon I. Einarsson
  • Patent number: 11903960
    Abstract: Described herein are methods for treating fibrosis, e.g., kidney fibrosis, using agents that target Secreted Modular Calcium-binding protein 2 (SMOC2).
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: February 20, 2024
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Vishal S. Vaidya, Casimiro Gerarduzzi
  • Patent number: 11897953
    Abstract: This invention relates generally to compositions and methods for modulating complement component 3 (C3) activity or expression to treat, control or otherwise influence tumors and tissues, including cells and cell types of the tumors and tissues, and malignant, microenvironmental, or immunologic states of the tumor cells and tissues. The invention also relates to methods of diagnosing, prognosing and/or staging of tumors, tissues and cells.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 13, 2024
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Aviv Regev, Ana Carrizosa Anderson, Ayshwarya Subramanian, Orit Rozenblatt-Rosen
  • Patent number: 11890063
    Abstract: Systems and methods for creating images of an environment includes controlling at least one camera to acquire imaging data from the environment and selecting, from the imaging data, a three-dimensional-two-dimensional correspondence as a control point for use in a perspective-n-point problem to determine a position and orientation of the at least one camera from n known correspondences between three-dimensional object points and their two-dimensional image projections in the environment. The method also includes reprojecting at least a selected number of the projections, determining a reprojection error for each of the projections, and performing a weight assignment of reprojection errors to distinguish the inliers form outliers. These steps of the method are repeated to apply the weight assignment to outliers in a decreased fashion during iterations to reduce an impact of outliers in the real-time display of the environment.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: February 6, 2024
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Jayender Jagadeesan, Haoyin Zhou
  • Patent number: 11890321
    Abstract: Disclosed herein are a means to prevent and/or ameliorate age, disease and obesity associated metabolic diseases, such as diabetes and impaired glucose tolerance. Also disclosed are compositions and methods that relate to the findings that GDF11 prevents weight gain, improves glucose tolerance and reduces hepatosteatosis in aged mice administered a high fat diet. In particular, the methods and compositions described herein relate to increasing the level of GDF11 in a subject, thereby treating or preventing the development of obesity in the subject, reducing the metabolic consequences of obesity and improving the subject's metabolic health.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: February 6, 2024
    Assignees: President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Ornella Barrandon, Tommaso Poggioli, Douglas A. Melton, Richard T. Lee
  • Patent number: 11884717
    Abstract: Described herein are methods for suppressing an immune response in a subject, e.g., a subject with an autoimmune disease, by administering to the subject a therapeutically effective amount of recombinant CD5L, CD5L homodimers and/or CD5L:p40 heterodimers, or nucleic acids encoding any of these. Also described are methods for enhancing an immune response in a subject, e.g., a subject with cancer, infection, or an immune deficiency, by administering to the subject a therapeutically effective amount of an antibody or antigen-binding fragment thereof that binds specifically to CD5L, D5L homodimers and/or CD5L:p40 heterodimers, and inhibits their binding to the IL-23 receptor, or inhibits formation of the CD5L homodimer and/or CD5L:p40 heterodimer, or inhibitory nucleic acids that target CD5L and/or p40.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 30, 2024
    Assignees: The Brigham and Women's Hospital, Inc., The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Vijay K. Kuchroo, Chao Wang, Aviv Regev, Karthik Shekhar
  • Publication number: 20240024250
    Abstract: Self-actuating articles including, for example, self-actuating needles and/or self-actuating biopsy punches, are generally provided. Advantageously, the self-actuating articles described herein may be useful as a general platform for delivery of a wide variety of pharmaceutical drugs that are typically delivered via injection directly into tissue due to degradation in the GI tract. The self-actuating articles described herein may also be used to deliver sensors and/or take biopsies without the need for an endoscopy. In some embodiments, the article comprises a spring (e.g., a coil spring, a beam, a material having particular mechanical recovery characteristics).
    Type: Application
    Filed: June 1, 2023
    Publication date: January 25, 2024
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Patent number: 11882365
    Abstract: An apparatus for correction of a direction to which a tool channel or a camera moves or is bent in a case where a displayed image is rotated. The apparatus includes at least one memory and at least one processor that executes instructions stored in the memory to receive a directional command of a capturing direction of a camera, move the capturing direction of the camera according to the received directional command, detect a rotation amount of a captured image displayed on a monitor, wherein the captured image is captured by the camera, and correct, based on the detected rotation amount, directional information corresponding to a particular directional command or directional coordinate for moving the camera, wherein the directional information is used for moving the capturing direction of the camera.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 23, 2024
    Assignees: Canon U.S.A., Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Fumitaro Masaki, Franklin King, Takahisa Kato, Brian Ninni, HuaLei Shelley Zhang, Nobuhiko Hata
  • Patent number: 11874276
    Abstract: Provided herein are Stimulator of Interferon Genes (STING) and Stimulated 3 Prime Antisense Retroviral Coding Sequences (SPARCS) genes as biomarkers for determining an effective therapy for treating cancer. Further provided are methods for treating cancer using said biomarkers.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 16, 2024
    Assignees: Dana-Farber Cancer Institute, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: David Barbie, Israel CaƱadas, Shunsuke Kitajima, Thanh Barbie
  • Patent number: 11858986
    Abstract: The invention relates to antibodies, or antigen-binding fragments thereof, that specifically binds to interferon beta (IFN?). Such antibodies, or antigen-binding fragments thereof, are are useful for various therapeutic or diagnostic purposes.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: January 2, 2024
    Assignees: Pfizer Inc., The Brigham And Women's Hospital, Inc.
    Inventors: Stefano V. Gulla, Christine Huard, Janet Elizabeth Buhlmann, Juan Carlos Almagro, Sreekumar R. Kodangattil, Steven A. Greenberg, Edward Roland Lavallie, Eric M. Bennett, Lidia Mosyak, James Perry Hall, Anthony John Coyle