Patents Assigned to The Charles Stark Draper Laboratory, Inc.
  • Patent number: 11773133
    Abstract: Compositions and methods for optically-verified, sequence-controlled polymer synthesis are described.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 3, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Andrew P. Magyar, Melissa M. Sprachman
  • Patent number: 11774602
    Abstract: A distributed navigation system includes navigation platforms, each having a universal navigation processor, relative navigation systems to provide source information to the navigation platforms, navigation filters provided on one or more of the universal navigation processors, and an anchor navigation node disposed on one or more of the navigation platforms to form one or more anchor navigation platforms. Each anchor navigation node includes an inertial navigation system, a clock, and absolute navigation systems, which are used, in combination with source information, to determine navigation information. The anchor navigation platforms provide the navigation information to other navigation platforms.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: October 3, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Benjamin F. Lane, William W. Whitacre, Robin Mark Adrian Dawson, Joseph M. Kinast, Cort Nolan Johnson, Gregory P. Blasche, Michael A. Aucoin, Jeffrey D. Jungemann, Peter A. Lewis, Stephen P. Smith
  • Patent number: 11771876
    Abstract: A system for the delivery of therapeutic substances to cavities of a patient. The system can include a handpiece tool coupled with a pump. The handpiece tool can include a shaft including a first portion of a channel coupled to a multi-input tubing. The handpiece tool can include an angled portion coupled with the shaft. The handpiece tool can include a second portion of the channel, wherein the angled portion positions a tip portion within a cavity, wherein the tip portion projects from the angled portion and includes an outlet and a third portion of the channel. The handpiece tool can include a collar a distance from the outlet, the collar configured to control a distance the tip portion projects. The handpiece tool can include a mixing chamber configured to receive the components of the drug and output the mixed drug via the third portion of the channel.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: October 3, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Marcello Peppi, Ernest Soonho Kim
  • Patent number: 11762062
    Abstract: A LiDAR system emits single mode light from a photonic integrated circuit (PIC) and is capable of receiving a different mode light, or multiple modes of light, into the PIC. Objects in the LiDAR's field of view may reflect light with a mode different from the mode of the light that illuminated the objects. Thus, in some embodiments, a single-mode optical waveguide, a single-mode-multi-mode optical junction, a multi-mode optical waveguide and an array of optical emitters on the PIC are configured to emit into free space light of a single mode from each optical emitter of the array of optical emitters. The multi-mode optical waveguide and the array of optical emitters are configured to receive from the free space light of a mode different from the single mode, or multiple modes, and to couple the light of the different mode or multiple modes into the multi-mode optical waveguide.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: September 19, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Byrnes, Michael G. Moebius, Steven J. Spector
  • Patent number: 11760967
    Abstract: This disclosure provides systems and methods for seeding cell cultures in a microfluidic device. The systems and methods of this disclosure can enable flow of a cell solution from one side of a scaffold, such as a porous substrate or membrane, to the other side of the scaffold. Flow of the liquid can pass through the scaffold while the cells themselves do not, resulting in the cells driven to the surface of the scaffold for consequent attachment. A microfluidic device can include a microfluidic feature structured to create a seal between a cell seeding tool and an inlet to a microchannel of the microfluidic device. This can enable a pressure-driven flow to push fluid down the channel and through pores of the membrane. In contrast, traditional gravity fed seeding of cells may not create enough pressure to drive fluid through the pores of the scaffold.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 19, 2023
    Assignee: Charles Stark Draper Laboratory, Inc.
    Inventors: Hesham Azizgolshani, Brian Cain, Joseph Charest, Jonathan Robert Coppeta, Brett Isenberg, Timothy Petrie
  • Publication number: 20230285172
    Abstract: According to various aspects and embodiments, a growth adaptive expandable stent is provided. The expandable stent includes a stent structure having a cylindrical shape that is self-expanding in a radial direction and includes a plurality of cylindrical rings disposed along a longitudinal axis of the stent structure. The stent structure is configured to exert a continuous outward radial force over time when implanted such that a diameter of the stent structure expands from a first value to a second value that is at least about 1.5 times the first value.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 14, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Daniel F. King, Stephanie Lynne Golmon, Jonathan R. Coppeta, Jesse M. Carr, Corin Williams
  • Patent number: 11755902
    Abstract: A method of operating a biological interface is disclosed. The method may include obtaining an input physiological or neural signal from a subject, acquiring an input set of values from the input signal, obtaining a predictive signal from the subject or the environment, acquiring a predictive set of values from the predictive signal, training a decoder function in response to data from the predictive set of values, performing at least one calculation on the input set of values using the decoder function to produce an output set of values, and operating a device with the output set of values. A biological interface system is also disclosed. The biological interface system may contain an input signal sensor, an input signal processor, a predictive signal processor, a memory device storing data, and a system processor coupled to the memory device and configured to execute a decoder function.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: September 12, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventor: Jesse J. Wheeler
  • Patent number: 11754378
    Abstract: A tail for a projectile includes a body having a longitudinal axis. A steering assembly is secured to the body. The steering assembly includes a flap movable from a first position in which the flap does not extend radially beyond the body to a second position in which the flap extends radially beyond the body and at an angle relative to the longitudinal axis, and a flap release mechanism. A projectile including a tail according to the present disclosure is also provided.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: September 12, 2023
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Glenn Richard Thoren, William Whitcomb McFarland, Rebecca Ann DeFronzo, Stephen Louis Bellio, Jesse M. Carr, Jeffery Brandon DeLisio, Gregory M. Fritz, Sean George
  • Publication number: 20230258636
    Abstract: A method of manufacturing synthetic particles for use in microfluidic devices is disclosed. The method includes identifying a set of particle characteristics for a fluid-based process. The set of particle characteristics can include a synthetic particle density and one or more of a size, compressibility, elastic modulus, or porosity. The method includes selecting an input material for the synthetic particles based on the set of synthetic particle characteristics. The method may include selecting an additive based on the set of synthetic particle characteristics. The method includes providing input material and the additive into a droplet generator to create one or more synthetic particles having the set of synthetic particle characteristics, and modifying a surface characteristic the synthetic particles, such that the synthetic particles bind to a target particle in a solution.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 17, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Ryan Dubay, Jason Fiering, Eric Darling
  • Patent number: 11720361
    Abstract: Techniques are described for metadata processing that can be used to encode an arbitrary number of security policies for code running on a processor. Metadata may be added to every word in the system and a metadata processing unit may be used that works in parallel with data flow to enforce an arbitrary set of policies. In one aspect, the metadata may be characterized as unbounded and software programmable to be applicable to a wide range of metadata processing policies. Techniques and policies have a wide range of uses including, for example, safety, security, and synchronization. Additionally, described are aspects and techniques in connection with metadata processing in an embodiment based on the RISC-V architecture.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: August 8, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Andreā€² DeHon, Eli Boling
  • Publication number: 20230234058
    Abstract: A microfluidic system can include a substrate comprising an elastic material and defining a microfluidic channel. The substrate can have a first set of dimensions defining a thickness of a wall of the microfluidic channel and a second set of dimensions defining a width of the microfluidic channel. A transducer can be mechanically coupled with the substrate. The transducer can be operated at a predetermined frequency different from a primary thickness resonant frequency of the transducer. A thickness and a width of the transducer can be selected based on the first set of dimensions defining the thickness of the wall of the microfluidic channel and the second set of dimensions defining the width of the microfluidic channel.
    Type: Application
    Filed: April 3, 2023
    Publication date: July 27, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Ryan Dubay, Jason Fiering, Rebecca Christianson, Jason Durant, Charles Lissandrello
  • Patent number: 11709680
    Abstract: A system and method of processing instructions may comprise an application processing domain (APD) and a metadata processing domain (MTD). The APD may comprise an application processor executing instructions and providing related information to the MTD. The MTD may comprise a tag processing unit (TPU) having a cache of policy-based rules enforced by the MTD. The TPU may determine, based on policies being enforced and metadata tags and operands associated with the instructions, that the instructions are allowed to execute (i.e., are valid). The TPU may write, if the instructions are valid, the metadata tags to a queue. The queue may (i) receive operation output information from the application processing domain, (ii) receive, from the TPU, the metadata tags, (iii) output, responsive to receiving the metadata tags, resulting information indicative of the operation output information and the metadata tags; and (iv) permit the resulting information to be written to memory.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: July 25, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steve E. Milburn, Eli Boling, Andre' DeHon, Andrew B. Sutherland, Gregory T. Sullivan
  • Patent number: 11701652
    Abstract: A method for manufacturing a microfluidic device can include providing a base component to define a first portion of the microfluidic device. A cap component of the microfluidic device can be fabricated with a sealing lip extending a first distance from a first side of the cap component and a support portion extending a second distance, less than the first distance, from the first side of the cap component. The method can include positioning the cap component and the base component within a mold to bring the sealing lip of the cap component in contact with the base component. The base component, the support portion of the cap component, and the sealing lip of the cap component together can define a cavity. The method can include injecting a polymer material into the mold to cause the polymer material to fill the cavity.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: July 18, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventor: Hesham Azizgolshani
  • Publication number: 20230218813
    Abstract: Systems and methods for cleansing blood are disclosed herein. The methods include acoustically separating undesirable particles bound to capture particles from formed elements of whole blood. After introducing the capture particles to whole blood containing undesirable particles, the whole blood and capture particles are flowed through a microfluidic separation channel. At least one bulk acoustic transducer is attached to the microfluidic separation channel. A standing acoustic wave, imparted on the channel and its contents by the bulk acoustic transducer, drives the formed elements and undesirable particles bound to capture particles to specific aggregation axes. After aggregating the particles, the formed elements exit the separation channel through a first outlet and are returned to the patient. The undesirable particles, bound to the capture particles, exit through a second outlet and can be discarded to saved for later study.
    Type: Application
    Filed: March 14, 2023
    Publication date: July 13, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jason O. Fiering, Shivshanker Sundaram, Andrew Meuller
  • Patent number: 11698526
    Abstract: A multi channel beamsplitter system operating over a wide spectral band has high optical performance despite the fact that the incoming and/or exiting light is not collimated and its material is dispersive. This is achieved using wavefront compensators that are matched to the curvature of the wavefronts of the incoming and/or exiting light.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: July 11, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Matthew A. Sinclair, Adam F. Kelsey, David A. Landis, Stephanie L. Golmon, Buddy Clemmer, Juha-Pekka Laine
  • Patent number: 11699862
    Abstract: An antenna system has a two-dimensional field of view, yet can be implemented on a surface, such as on electronic or photonic integrated circuits. The antenna system includes an array of antennas disposed in a predetermined non-linear pattern and a two-dimensional beamforming network (BFN). The antenna system can be steered/selectively beamformed in two dimensions through beam port selection. The beamforming network is disposed entirely on a single first surface. The beamforming network has a one-dimensional array-side interface disposed on the first surface and a one-dimensional beam-side interface disposed on the first surface. The antennas of the array of antennas are individually communicably coupled to the array-side interface. Segments of the beam-side interface map to respective pixels in the two-dimensional field of view.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: July 11, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Julian A. Brown, Benjamin F. Lane, Hannah Clevenson, Lucas D. Benney, Michael G. Moebius, Robin M. A. Dawson, Steven J. Spector
  • Publication number: 20230211137
    Abstract: The present disclosure describes a system for the delivery of therapeutic substances to the cavities of a patient. The system can include a wearable micropump that is fluidically coupled with a handpiece. The handpiece can be inserted, for example, into the middle ear via a surgical tympanotomy approach. The system can enable a controlled injection of a therapeutic substance directly into the patient's cavity.
    Type: Application
    Filed: March 10, 2023
    Publication date: July 6, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Marcello Peppi, Ernest Soonho Kim
  • Patent number: 11688995
    Abstract: A grating emitter method and system for modulating the polarization of an optical beam, such as one for transmission through free-space or use in an atomic clock.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: June 27, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Spector, Steven J. Byrnes, Robert Lutwak
  • Publication number: 20230183631
    Abstract: Transfer of genetic and other materials to cells is conducted in a hands-free, automated and continuous process that includes flowing the cells between electroporation electrodes to facilitate delivery of a payload into the cells, while acoustophoretically focusing the cells. Also described is a control method for the acoustophoretic focusing of cells that includes detecting locations of cells flowing through a channel, such as with an image analytics system, and modulating a drive signal to an acoustic transducer to change the locations of the cells flowing in the channel. Finally, an electroporation driver module is described that uses a digital to analog converter for generating an electroporation waveform and an amplifier for amplifying the electroporation waveform for application to electroporation electrodes.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 15, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Vishal Tandon, Charles A. Lissandrello, Ryan A. Dubay, Rebecca Christianson, Jenna Leigh Balestrini, Peter Hsi, Jason Fiering
  • Patent number: 11672680
    Abstract: According to various aspects and embodiments, a growth adaptive expandable stent is provided. The expandable stent includes a stent structure having a cylindrical shape that is self-expanding in a radial direction and includes a plurality of cylindrical rings disposed along a longitudinal axis of the stent structure. The stent structure is configured to exert a continuous outward radial force over time when implanted such that a diameter of the stent structure expands from a first value to a second value that is at least about 1.5 times the first value.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: June 13, 2023
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Daniel F. King, Stephanie Lynne Golmon, Jonathan R. Coppeta, Jesse M. Carr, Corin Williams