Patents Assigned to The Georgia Tech Research Corporation
  • Publication number: 20240157295
    Abstract: A transformational energy efficient technology using ionic liquid (IL) to couple with monoethanolamine (MEA) for catalytic CO2 capture is disclosed. [EMmim+][NTF2?] based catalysts are rationally synthesized and used for CO2 capture with MEA. A catalytic CO2 capture mechanism is disclosed according to experimental and computational studies on the [EMmim+][NTF2?] for the reversible CO2 sorption and desorption.
    Type: Application
    Filed: October 24, 2022
    Publication date: May 16, 2024
    Applicants: University of Wyoming, Georgia Tech Research Corporation
    Inventors: Maohong Fan, Xiaowen Zhang, Yangyan Gao, Armistead G. Russell, Xin He
  • Patent number: 11984584
    Abstract: Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: May 14, 2024
    Assignees: GEORGIA TECH RESEARCH CORPORATION, SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Oleksandr Magazynskyy, Patrick Dixon, Benjamin Hertzberg
  • Patent number: 11984447
    Abstract: An exemplary embodiment of the present disclosure provides a detector configured to output a signal associated with one or more interactions with subatomic particles. The detector comprises a sensor comprising a first diode comprising first semiconductor material abutting a first metal and forming a first junction, wherein the sensor is configured to be exposed to subatomic particles and a voltage reference member configured to generate a reference measurement. The sensor and the voltage reference member form a bandgap reference circuit. The present disclosure also provides methods for detecting subatomic particles from a solid-state detector comprising a first Schottky diode in electrical communication with a reference voltage member comprising a parallel circuit of two or more second Schottky diodes, wherein the first Schottky diode is configured to be exposed to subatomic particles and the second Schottky diodes of the reference voltage member are configured to generate a reference measurement.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: May 14, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Elaine Rhoades, Aaron S. Green, William Daniel Hunt
  • Publication number: 20240148901
    Abstract: Prophylactic compositions for inhibiting or reducing HIV infection and methods of their use are provided. One embodiment provides an antibody or an antigen binding fragment thereof that specifically binds to an HIV protein, for example gp120, and Cinhibits or reduces the ability of the HIV vims to infect human cells. One embodiment provides a PGT121 antibody or antigen binding fragment thereof modified to contain a GPI membrane anchor, wherein the antibody specifically binds to an HIV protein. In some embodiments the GPI membrane anchor is in the heavy chain of the antibody or antigen fragment thereof. In some aspects the antibody or antigen binding fragment specifically to gp120 or gp41.
    Type: Application
    Filed: October 28, 2020
    Publication date: May 9, 2024
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Philip J. SANTAGELO, Kevin LINDSAY, Daryll VANOVER
  • Patent number: 11976708
    Abstract: A pulley belt (100) for transmitting force from a first pulley (12) to a second pulley (14) includes a belt member (110) having a contact surface (120) configured to be in contact with the first pulley (12) and the second pulley (14). A plurality of projections (122) extends from the contact surface (120). The projections have a predetermined height/diameter aspect ratio. In a method of making a pulley belt, an uncured elastomer (316) is placed in a mold (310) having a shape of a belt member (320) with an inner surface from which patterned projections (312) extend inwardly. The uncured elastomer is cured to form a cured belt member (320), which is removed from the mold (310).
    Type: Grant
    Filed: October 17, 2020
    Date of Patent: May 7, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Michael Varenberg, Michael Leamy, Yingdan Wu
  • Patent number: 11977309
    Abstract: A variety of anodically-coloring electrochromic molecules are provided. In particular, anodically-coloring electrochromic molecules and devices are provided that allow for tuning the absorption bands in the cation state across the visible spectrum while demonstrating little to no coloring or visible absorption in the neutral state, resulting in high-contrast devices. Electrochromic devices are also provided, as well as methods of making the devices and molecules, and methods of use thereof.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 7, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: John Robert Reynolds, Dylan T. Christiansen
  • Publication number: 20240140022
    Abstract: A sensor includes a grayscale digital light processing (g-DLP) 3D printed monolithic substrate with at least one microfluid channel. The monolithic substrate is formed from a resin configured to form a solid polymer using g-DLP 3D printing with a Young's modulus ranging from 0.1 MPa to 100 MPa. The resin includes a donor moiety, an acceptor moiety different than the donor moiety, a rigid moiety, a photoinitiator, and a photoabsorber. The donor moiety is in the form of an acrylate monomer with a side group, the acceptor moiety is in the form of an acrylate monomer with a side group, and the rigid moiety is in the form of an acrylate monomer with a side group. Also, the sensor can include a sensor fluid disposed within the at least one microfluid channel.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Georgia Tech Research Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuyang Song, Masato Tanaka, Liang Yue, Hang Qi
  • Patent number: 11970268
    Abstract: A fractal unmanned aircraft system (200) includes a first module (100), a second module (100) and a third module, (100) each having a top member (120) and a first thruster (130) affixed thereto. Each module (100) is laterally coupled to each other. A fourth module (100) has a bottom that is affixed to the top members (120) of the first module (100), the second module (100) and the third module (100) so as to form a tetrahedral structure. A power source (220) supplies power to the first thrusters (130). A control circuit (222) controls the unmanned aircraft system so as to cause the fractal unmanned aircraft system (200) to fly in a controlled manner.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: April 30, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Kevin Garanger, Jeremy Epps, Eric Feron, Michael Miller
  • Patent number: 11973474
    Abstract: The disclosed technology includes device, systems, techniques, and methods for amplifying a complex modulated signal with a broadband power amplifier. A broadband power amplifier may include an input network connected a long an input signal path, a driver stage, an interstage matching network stage, a power amplification stage, and a broadband matching output network. The broadband matching output network may include two coupled transmission lines and a compensation line connected between the two coupled transmission lines. Further, the broadband matching output network may include a capacitor connected with a secondary winding and a capacitor connected to each of the primary windings. The disclosed technology further includes transmission systems incorporating the broadband power amplifier.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: April 30, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Fei Wang, Hua Wang
  • Publication number: 20240137439
    Abstract: Various embodiments of the invention are detection systems and methods for detecting call provenance based on call audio. An exemplary embodiment of the detection system can comprise a characterization unit, a labeling unit, and an identification unit. The characterization unit can extract various characteristics of networks through which a call traversed, based on call audio. The labeling unit can be trained on prior call data and can identify one or more codecs used to encode the call, based on the call audio. The identification unit can utilize the characteristics of traversed networks and the identified codecs, and based on this information, the identification unit can provide a provenance fingerprint for the call. Based on the call provenance fingerprint, the detection system can identify, verify, or provide forensic information about a call audio source.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 25, 2024
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Vijay BALASUBRAMANIYAN, Mustaque AHAMAD, Patrick TRAYNOR, Michael Thomas HUNTER, Aamir POONAWALLA
  • Patent number: 11964242
    Abstract: Disclosed are methods of manufacturing a zeolite membrane, comprising: providing at least one porous substrate; and coating the at least one porous substrate with a membrane. In some embodiments, the method further comprises hydrothermally treating the membrane with a first hydrothermal treatment step with tetrapropylammonium fluoride (TPAF) and a second hydrothermal treatment step with tetraethylammonium hydroxide (TEAOH). In some embodiments, coating the substrate with a membrane comprises surrounding at least a portion of the at least one porous substrate with a precursor gel, the gel comprising a gel phase and a plurality of CHA or MFI crystals; heating the at least one porous substrate and the precursor gel; washing the at least one porous substrate; drying the at least one porous substrate; and calcining the at least one porous substrate.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 23, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Sankar Nair, Shaowei Yang, Christopher W. Jones, Byunghyun Min
  • Patent number: 11964109
    Abstract: Methods for controlling brain activity in a subject are described herein. An example method can include delivering a stimulus to the subject, wherein the stimulus induces neural activity in the subjects brain and modulates expression of at least one soluble mediator of cellular activity (such as, for example, a cytokine, chemokine, and/or growth factor) within the subject, and the stimulus is delivered to the subject for less than one hour.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: April 23, 2024
    Assignees: Georgia Tech Research Corporation, Emory University
    Inventors: Kristie Michelle Garza, Annabelle C. Singer, Levi Wood, Abigail L. Paulson
  • Patent number: 11966501
    Abstract: An exemplary blockchain-based decentralized computing system and method are disclosed for industrial analytics applications. The exemplary system and method leverage blockchain technology to deliver and execute privacy-preserving decentralized predictive analytics, machine learning, and optimization operations for various industrial applications using a set of self-contained analytics block smart contracts that can be readily utilized and in analytics applications to deploy across multiple sites.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 23, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Paritosh P. Ramanan, Nagi Z. Gebraeel
  • Publication number: 20240124641
    Abstract: Embodiments in accordance with the present invention encompass a variety of polymers derived from polycyclic olefin monomers, such as hydrocarbon functionalized norbornenes. The polymers so formed function as ionomers and are suitable as anion exchange membrane for fabricating a variety of electrochemical devices, among others. More specifically, the ionomeric polymers used herein are derived from a variety of quaternized amino functionalized norbornene monomers and are lightly crosslinked (less than ten mol %). The membranes made therefrom exhibit very high ionic conductivity of up to 198 mS/cm at 80° C. This invention also relates to using an anion conducting solid polymer electrolyte as the ion conducting medium between the two electrodes and the ion conducting medium within the electrodes acting as the ionic conduit between electroactive material and electrolyte. The electrochemical devices made in accordance of this invention are useful as fuel cells, gas separators, and the like.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 18, 2024
    Applicants: PROMERUS, LLC, GEORGIA TECH RESEARCH CORPORATION
    Inventors: PAUL A. KOHL, MRINMAY MANDAL, MATTHEW L. BARCHOK, DOUG SKILSKYJ, LARRY F. RHODES
  • Patent number: 11959836
    Abstract: The present disclosure provides for analysis systems that are configured to extract a fluid sample from a fluid (e.g., aqueous solution) in a reactor (e.g., bioreactor) at a first rate and then flow the fluid sample to a sensor system at a second rate to analyze the fluid sample. The sensor system can detect the presence and/or concentration of molecules (e.g., biomolecules such as biomarkers (e.g., metabolites, proteins, peptides, cytokines, growth factors, DNA, RNA, lipids) and cells of different types and cell properties, e.g., mechanical stiffness, etc.)). The data obtained can be used by a feedback control system to modify, as needed, the conditions in the reactor to enhance the productively of the reactor.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: April 16, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Mason Chilmonczyk, Peter Arthur Kottke
  • Patent number: 11962296
    Abstract: Disclosed herein is a flexible sensing interface, comprising: a sensor, comprising: a core; an inner electrode in the form of a conductive material in contact with the core; an inner dielectric material substantially encasing the inner electrode; an outer electrode in the form of a conductive material in contact with the inner dielectric material and in electrical communication with the inner electrode; and an outer dielectric material substantially encasing the outer electrode; wherein the inner dielectric material and the outer dielectric material comprise an elastic material. Also disclosed herein are systems and methods for making and using the same.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: April 16, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Seyedeh Fereshteh Shahmiri, Chaoyu Chen, Gregory D. Abowd, Shivan Mittal, Thad Eugene Starner, Yi-Cheng Wang, Zhong Lin Wang, Dingtian Zhang, Steven L. Zhang, Anandghan Waghmare
  • Patent number: 11950854
    Abstract: Certain implementations of the disclosed technology may include active marker devices, retrofits, systems, and methods for determining the position of interventional devices under MRI. A marker device is provided that utilizes an optical fiber, an acousto-optical sensor region that includes an electro-mechanical conversion assembly, and one or more antenna(e) The one or more antennae are configured to receive MRI radio-frequency (RF) electromagnetic energy and produce a corresponding electrical signal corresponding to the position. The acousto-optical sensor region may include a resonator and may be modulated by acoustic waves generated responsive to the electrical signal received from the one or more antennae The acousto-optical sensor region may be interrogated by light via the optical fiber to determine the position of the device for providing an active marker in the MRI image.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 9, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Fahrettin Levent Degertekin, Ozgur Kocaturk, Yusuf S. Yaras
  • Publication number: 20240113391
    Abstract: The present disclosure relates to Li-ion battery with an anode, a cathode, a porous separator membrane, and an electrolyte that fills pores in the anode, the cathode, and the porous separator membrane; and a porous separator membrane and methods of generating the same.
    Type: Application
    Filed: June 12, 2023
    Publication date: April 4, 2024
    Applicants: Georgia Tech Research Corporation, Daicel Corporation
    Inventors: Aashray Narla, Wenbin Fu, Kostiantyn Turcheniuk, Gleb Yushin, Atsushi Kume
  • Publication number: 20240101875
    Abstract: A resin for adhesive bonding to fabrics includes between about 80 wt. % and about 90 wt. % of a monomer, between about 10 wt. % and about 20 wt. % of a cross-linking agent with two or more acrylic acid groups separated by a flexible linker, between about 0.5 wt. % and about 1.5 wt. % of a photoinitiator, and between about 10 wt. % and about 15 wt. % of a thickening agent. The monomer as a melting point less than 25° C. and the flexible linker has subunits such as methylene glycol, ethylene glycol, propylene glycol, butylene glycol, and combinations thereof. Also, the resin forms a bond with polyurethane coated nylon fabric and the bond exhibits an adhesion strength greater than a tensile strength of the polyurethane coated nylon fabric.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha, Georgia Tech Research Corporation
    Inventors: Yuyang Song, Masato Tanaka, Liang Yue, Hang Qi
  • Patent number: 11940611
    Abstract: Disclosed herein are methods of tomographic imaging, the methods comprising emitting a beam of light from a light source to a sample and modulating the beam of light through a spatial light modulator configured to convert the beam of light to an Airy beam. The spatial light modulator can be rotatable and positioned at a first angle relative to the sample. The method can further obtain a first perspective view of the sample, rotate the spatial light modulator to a second angle relative to the sample, and obtain a second perspective view of the sample. Each of the perspective views can be generated by the Airy beam interacting with the sample on a focal plane. The method can then reconstruct a volumetric three-dimensional view of the sample using the first perspective view and the second perspective view.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: March 26, 2024
    Assignee: Georgia Tech Research Corporation
    Inventor: Shu Jia