Patents Assigned to The Regents of the University of Colorado, a body corporate
  • Patent number: 11976328
    Abstract: Disclosed are biomarkers, methods and assay systems for the identification of poor prognosis of interstitial pneumonia (pulmonary fibrosis) in an individual diagnosed with suspected of having interstitial pneumonia.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 7, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: David A. Schwartz, Tasha E. Fingerlin, Weiming Zhang
  • Patent number: 11975314
    Abstract: Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous support structures using atomic layer deposition techniques.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: May 7, 2024
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Staci A. Moulton, Alan W. Weimer
  • Patent number: 11971535
    Abstract: The present disclosure relates optical imaging devices and methods useful in biological and medical imaging applications. In one embodiment, an optical imaging device includes a flexible lightguide having a first end and a second end, the output of the source of pulsed infrared radiation being optically coupled to the first end of the flexible lightguide; a lens assembly attached to and optically coupled to the second end of the flexible lightguide, the lens assembly comprising a variable-focus lens element, the a variable-focus lens element having a tunable focal length; and a photodetector coupled to the flexible lightguide to detect radiation propagating from the second end toward the first end of the flexible lightguide. The optical imaging devices and methods can be used in both confocal and multi-photon techniques.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: April 30, 2024
    Assignee: The Regents of the University of Colorado, A Body Corporate
    Inventors: Juliet T. Gopinath, Emily A. Gibson, Victor M. Bright, Richard Weir, Diego Restrepo, Baris Ozbay
  • Patent number: 11965831
    Abstract: Sub-diffraction limited fluorescent images using a fiber-based stimulated emission depletion (STED) microscope are reported. Both excitation and depletion beams are transported through polarization-maintaining fiber and a lateral resolution of 100 nm has been achieved.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 23, 2024
    Assignee: The Regents of the University of Colorado, a Body Corporate
    Inventors: Juliet T. Gopinath, Brendan M. Heffernan, Robert Niederriter, Stephanie A. Meyer, Diego Restrepo, Emily A. Gibson, Mark E. Siemens
  • Patent number: 11964985
    Abstract: The invention provides methods of inhibiting the growth or metastasis of a cancer in a mammal by inhibiting a Ral GTPase in the mammal. The invention also provides small molecule inhibitors of Ral GTPases useful in the methods of the invention and pharmaceutical compositions containing the therapeutically effective compounds of the invention, and methods of using the same.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: April 23, 2024
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE., INDIANA UNIVERSITY RESEARCH AND TECHNOLOGY CORPORATION, UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Dan Theodorescu, Michael Fitzpatrick Wempe, David Ross, Samy Meroueh, Martin A. Schwartz, Phillip Reigan
  • Patent number: 11960247
    Abstract: According to some aspects of the present disclosure, an atomic clock and methods of forming and/or using an atomic clock are disclosed. In one embodiment, an atomic clock includes: a light source configured to illuminate a resonance vapor cell; a narrowband optical filter disposed between the light source and the resonance vapor cell and arranged such that light emitted from the light source passes through the narrowband optical filter and illuminates the resonance vapor cell. The resonance vapor cell is configured to emit a signal corresponding to a hyperfine transition frequency in response to illumination from the light source, and a filter cell is disposed between the light source and the resonance vapor cell and configured to generate optical pumping. An optical detector is configured to detect the emitted signal corresponding to the hyperfine transition frequency.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: April 16, 2024
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Svenja Knappe, Sean Krzyzewski
  • Publication number: 20240120091
    Abstract: Embodiments of the present technology include a wearable physiological monitoring device, related algorithms and software that are tied to a portable electronic device for readout. The wearable device can perform real-time measurement of a number of physiological and environmental parameters including heart rate, pulse oximetry, respiration, movement, environmental particulate matter, moisture, temperature (e.g., ambient air and body temperatures) and geospatial location. Some embodiments may establish a physiological baseline for a patient by measuring the above parameters during a healthy state. Collected data can be wirelessly transmitted to a portable electronic device or monitoring and feedback platform where software will analyze the data and make assessments of the device wearer's health based upon the wearer's baseline.
    Type: Application
    Filed: December 4, 2023
    Publication date: April 11, 2024
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Robin Deterding, Tam Vu
  • Patent number: 11952576
    Abstract: A novel method of diluting the structures in the cell population, such that individual cells, dependent on the activity of the structures, become single measurement devices. This can be applied to all Bacterial Microcomparments (“BMCs”), organelles, and macromolecules, and could provide a universal method for the design of novel ones and understanding of the diverse structures. In one aspect the present invention provides A method of creating a bacterial strain with inducible and detectable carboxysomes. The method includes the steps of incorporating a labeled carbon-fixation enzyme into the genome of a bacterium; deleting all or a portion of the ccm operon from the bacterium; and reintroducing a ccm operon comprising an inducible promoter to create a ?ccm+ strain.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 9, 2024
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Jeffrey Carlyle Cameron, Nicholas C. Hill, Jian Wei Tay, Sabina Altus, David Matthew Bortz, Kristin Ann Moore
  • Patent number: 11946598
    Abstract: Methods, systems, and devices for ultra or extreme-high vacuum are described. Such systems may comprise a vacuum chamber, a target within the vacuum chamber, two or more overlapping radiation shields arranged within an inner vacuum space of a vacuum chamber, and surrounding at least a portion of the target, a first and a second cooling element unit thermally coupled to a first and second radiation shield of the two or more overlapping radiation shields, wherein the first unit is configured to reduce the first radiation shield's temperature to at least <100K, and the second unit is configured to reduce the second radiation shield's temperature to at least <25K, and a third cooling element unit coupled to the target and isolated from the first and second radiation shield, wherein the third cooling element unit is configured to reduce the target's temperature to at least <4K.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 2, 2024
    Assignee: The Regents of of the University of Colorado, a body corporate
    Inventors: Daniel Dessau, Justin Griffith
  • Patent number: 11944725
    Abstract: The present invention relates to a medical implant, and more particularly, to a vascular implant having a dual coating structure for preventing in-stent restenosis and thrombosis. In one embodiment, the invention contemplates a vascular stent with a coating comprising a hydrophobic, degradable core with a coaxial sheath comprising at least one polyethylene-glycol derivative. In one embodiment, the at least one polyethylene-glycol derivative comprises polyethylene-glycol dimethacrylate.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 2, 2024
    Assignee: The Regents of the University of Colorado, A Body Corporate
    Inventors: Parnaz Boodagh, Wei Tan, Michael Floren
  • Publication number: 20240092837
    Abstract: The present invention describes peptides, peptides carriers, peptide nanobodies, and peptide-drug covalent conjugates having efficient cell and tissue penetration. The peptides and associated configurations can be used in covalent attachments or as complexes or nanoparticles in conjunction with therapeutic agents to enhance their tissue, cellular, and intracellular delivery. Also, the peptides and associated configurations can enhance binding to negatively charged matrices in the body for improved localization or retention of therapeutic carriers and agents.
    Type: Application
    Filed: July 26, 2023
    Publication date: March 21, 2024
    Applicant: The Regents of the University of Colorado, A Body Corporate
    Inventors: Uday Kompella, Arun Upadhyay
  • Patent number: 11932867
    Abstract: Methods of preventing or treating rheumatoid arthritis (RA) in a subject by introducing the DRB1*04:01K71E mutation that is resistant to RA. The resistant allele is introduced into the subject having or at risk of developing RA, using a HLA CRISPR/Cas9 vector that targets codon 71 in the HLA allele DRB1*04:01, introducing a single A to G point mutation in codon 71 by homology directed repair to alter the lysine at position 71 of the expressed protein to glutamic acid. This modified allele is affected in the subject's hematopoietic stem cells, which are then expanded and transplanted back into the patient. This microgene therapy confers RA-resistance via an autologous transplant. The invention includes isolated nucleic acids, vectors, recombinant viruses, cells, and pharmaceutical compositions to modify the HLA DRB1*04:01 allele.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 19, 2024
    Assignees: National Jewish Health, The Regents of the University of Colorado, a Body Corporate
    Inventors: Brian Freed, Kirsten Anderson, Christina Roark, Jennifer Matsuda
  • Publication number: 20240075189
    Abstract: A two-component biomaterial and method that replicates both the structural complexity and diverse molecular composition necessary to create a tissue's form and function. It is an objective of the current invention to use the unique combination material and methods herein to provide a pharmaceutical composition, a medical device, a tissue regeneration scaffold, as well as a scaffold for 3D organ culture (tissue on a chip, lab grown meat, research stem cell differentiation) comprising a significant amount of acellular tissue particles packed tightly and held together via crosslinking between the acellular particles and a thiolated protein.
    Type: Application
    Filed: December 14, 2021
    Publication date: March 7, 2024
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Jeanne Barthold, Corey P. Neu
  • Publication number: 20240077778
    Abstract: Surface polarity of a ferroelectric nematic can be configured to generate vectorial control of the orientation of its bulk polarization field. The contact between a surface with in-plane polarity and a ferroelectric nematic liquid crystal generates preferred in-plane orientation of the ferroelectric polarization field at that interface, which can lead to the formation of fluid or glassy monodomains of high polarization without electric field poling.
    Type: Application
    Filed: December 30, 2021
    Publication date: March 7, 2024
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Noel A. Clark, Xi Chen, Joseph E. Maclennan, Matthew A. Glaser
  • Patent number: 11916522
    Abstract: A wideband amplifier includes a first diplexer receiving broadband input signals and divides them by frequency into a low band input signal and a high band input signal. The amplifier has separate high band and low band amplifiers coupled to amplify the low and high band input signals, and a second diplexer coupled to combine outputs of the low and high band amplifiers to form a wideband output. A method of amplification of an input signal includes separating the input signal into high and low band signals, separately amplifying the high and low band signals, and combining amplified high and low band signals into an output signal.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: February 27, 2024
    Assignees: The Regents of the University of Colorado, a body corporate, Massachusetts Institute of Technology
    Inventors: Philip Zurek, Zorana Popovic
  • Patent number: 11911532
    Abstract: Provided herein is a class of reversible thermal gel polymers, formulations thereof, methods for using, and methods for making said reversible thermal gel polymers. Reversible thermal gel polymers and formulations are provided having versatile chemical, physical, mechanical and/or optical properties beneficial for a range of applications including medical treatment. In some embodiments, the architecture and composition of the polymer allows for tunable selection of one or more physical properties supporting a particular application.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: February 27, 2024
    Assignee: The Regents Of The University of Colorado, A Body Corporate
    Inventors: Robin Shandas, Steven Lewis, Daewon Park, Omid Jazaeri, Steven Lammers, James Bardill, Brisa Pena-Castellanos
  • Publication number: 20240058817
    Abstract: A system and method for nanoparticle synthesis employing an adhesiveless, deconstructable microfluidic mixing chip and an expandable wireless network of syringe pumps fluidly coupled to one or more microfluidic mixing chips. The wireless network of syringe pumps is controlled by a microprocessor with feedback from each of the syringe pumps in the network to allow for both individual, grouped and multiplexed control over the plurality of syringe pumps in the network.
    Type: Application
    Filed: July 26, 2023
    Publication date: February 22, 2024
    Applicant: The Regents of the University of Colorado, A Body Corporate
    Inventors: Uday Kompella, Jonathan Taylor
  • Patent number: 11905267
    Abstract: Phenothiazine compounds of Formula (I) are described herein. These compounds are useful as highly reducing organic photoredox catalysts. Suitable substrates for use with the compounds of Formula (I) include acrylates, styrene, acrylamides, acrylonitrile, vinyl chloride, methylacrylonitrile, vinyl acetate, and acrylic acid.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: February 20, 2024
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE, COLORADO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Steven Sartor, Niels Damrauer, Garet Miyake, Cameron Chrisman, Ryan Pearson
  • Patent number: 11903874
    Abstract: An ophthalmic implant including an intraocular lens (IOL) and at least one drug delivery device. The IOL including an anterior side, a posterior side, a lens, and at least one haptic extending outwardly from the lens and including a first haptic extending from the lens at a first optic-haptic junction. The at least one drug delivery device including a first drug delivery device including a pad and a fixation portion extending from the pad. The pad including at least one therapeutic agent contained therein, an anterior surface, a posterior surface, and a sidewall extending around the pad and between the anterior surface and the posterior surface. The drug delivery device configured for attachment to the IOL via the fixation portion. In an assembled state of the implant, the first drug delivery device is attached to the IOL and the pad overlays the first optic-haptic junction.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: February 20, 2024
    Assignees: SpyGlass Pharma, Inc., The Regents of the University of Colorado, a body corporate
    Inventors: James R. Dennewill, Malik Y. Kahook, Glenn R. Sussman, Craig Alan Cable, II
  • Patent number: 11904007
    Abstract: Methods of treating or preventing stress, anxiety, or postoperative cognitive dysfunction. Also provided are methods of improving resilience in a subject by administering a therapeutically effective amount of isolated mycobacterium.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: February 20, 2024
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Christopher A. Lowry, Matthew G. Frank, Laura Fonken, Steven F. Maier