Patents Assigned to The United States of America as represented by the Secretary, Department of Health and Human Services
  • Patent number: 11767498
    Abstract: An in vitro tissue plate may include a well plate, a fluidic plate disposed on a bottom surface of the well plate, and a media manifold disposed on a bottom surface of the fluidic plate. The well plate may have at least two wells, including a tissue well and a waste well. The fluid plate may include a fluid channel extending between and fluidly connecting the tissue well to the waste well. The media manifold may include a one or more media outlets fluidly connected to the fluid channel. A tissue layer may be deposited in the tissue well. The tissue layer may include human cells such as neurovascular cells.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 26, 2023
    Assignees: Massachusetts Institute of Technology, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Johanna Bobrow, Todd Thorsen, David Walsh, Christina Zook, Min Jae Song, Marc Ferrer-Alegre, Sam Michael, Yen-Ting Tung, Molly Elizabeth Boutin
  • Publication number: 20230295550
    Abstract: Provided are inserts (100) for preparing a cell culture chamber(s), or array of chambers, inside of histology cassettes that are suitable for three-dimensional multicellular growth of a cell or cells into spheroids, organoids, or other 3D structures, such that the resulting 3D multi-cellular structures are ready and suitable for histology processing without transfer to a different receptacle or container. Further embodiments of the invention provide methods of preparing at least one cell culture chamber using the inserts, systems for growing three-dimensional multicellular spheroids comprising culturing cells within a cell culture chamber prepared using the inserts, and systems for analyzing at least one cultured cell in vitro comprising culturing cells within a cell culture chamber prepared using the inserts.
    Type: Application
    Filed: July 30, 2021
    Publication date: September 21, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Ralph E. Parchment, Thu A. Nguyen
  • Patent number: 11760794
    Abstract: Antibodies and antigen binding fragments that specifically bind to P. falciparum circumsporozoite protein and neutralize P. falciparum are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. The disclosed antibodies, antigen binding fragments, nucleic acids and vectors can be used, for example, to inhibit a P. falciparum infection.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: September 19, 2023
    Assignees: The United States of America, as Represented by the Secretary, Department of Health and Human Services, Sanaria Inc.
    Inventors: Robert Seder, Neville Kisalu, Azza Idris, Barbara Flynn, Stephen Hoffman
  • Patent number: 11760790
    Abstract: Antibodies and antigen binding fragments that specifically bind to HIV-1 Env and neutralize HIV-1 are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. Methods for detecting HIV-1 using these antibodies are disclosed. In addition, the use of these antibodies, antigen binding fragment, nucleic acids and vectors to prevent and/or treat an HIV-1 infection is disclosed.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 19, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Paolo Lusso, Qingbo Liu, Peter Kwong, John Mascola, Young Do Kwon
  • Patent number: 11759513
    Abstract: Attenuated G9P[6] rotavirus is disclosed herein. In some embodiments, pharmaceutical compositions are disclosed that include an attenuated G9P[6] rotavirus, or a component thereof. These compositions can be used to induce an immune response, such as a protective immune response, to a rotavirus. The compositions can be used as vaccines, such as for children (infants), for example in a prime boost strategy.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: September 19, 2023
    Assignee: The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Baoming Jiang, Yuhuan Wang
  • Publication number: 20230287067
    Abstract: The invention provides human immunogenic epitopes of HEMO and HHLA2 human endogenous retroviruses (HERVs), which can be used as a peptide, polypeptide (protein), and/or in a vaccine or other composition for the prevention or therapy of cancer. The invention further provides a nucleic acid encoding the peptide or polypeptide (protein), a vector comprising the nucleic acid, a cell comprising the peptide, polypeptide (protein), nucleic acid, or vector, and compositions thereof.
    Type: Application
    Filed: January 21, 2021
    Publication date: September 14, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Jeffrey Schlom, Duane H. Hamilton, Claudia M. Palena, Renee N. Donahue
  • Patent number: 11752138
    Abstract: The disclosure provides methods of treating a patient having primary hyperoxaluria or idiopathic hyperoxaluria comprising administering a therapeutically effective amound of compound of the formula and pharmaceutically acceptable salts, solvates, and hydrates thereof to the patient. The variables, e.g. ring A, n, R, R3, R10, X, Y, and Z are defined herein. These compounds act as lactate dehydrogenase inhibitors and are useful inhibiting the conversion of glyoxylate to oxalate. When administered to a patient having a disease or disorder associated with elevated oxalate levels, such as PH type 1, type 2, or type 3 or idiopathic hyperoxaluria the compounds prevent or substantially reduce the amount and buildup of oxalate the patient's kidneys, bladder, urinary tract and other parts of the patient's body.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: September 12, 2023
    Assignees: VANDERBILT UNIVERSITY, THE UAB RESEARCH FOUNDATION, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Matthew Hall, Daniel J. Urban, John Knight, Ross Holmes, Kyle David Wood, Alex Waterson, Victor M. Darley-Usmar, Leonard M. Neckers
  • Patent number: 11753408
    Abstract: Disclosed are compounds of formula (I) and formula (II): wherein R1, R2, A, and B are as defined herein. Also disclosed is a method of blocking transmission of a Plasmodium parasite and a method of treating or preventing malaria comprising administering to an animal an effective amount of a first compound of formula (I) or (II) either alone or in combination with a second compound selected from elesclomol, NSC174938, NVP-AUY922, Maduramicin, Narasin, Alvespimycin, Omacetaxine, Thiram, Zinc pyrithione, Phanquinone, Bortezomib, Salinomycin sodium, Monensin sodium, Dipyrithione, Dicyclopentamethylene-thiuram disulfide, YM155, Withaferin A, Adriamycin, Romidepsin, AZD-1152-HQPA, CAY10581, Plicamycin, CUDC-101, Auranofin, Trametinib, GSK-458, Afatinib, and Panobinostat.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: September 12, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Loyola University of Chicago
    Inventors: Wenwei Huang, Hao Li, Wei Sun, Xiuli Huang, Paresma R. Patel, Hangmao Sun, Wei Zheng, Xiao Lu, Philip E. Sanderson, Myunghoon Kim, Meghan J. Orr, Gregory J. Tawa, Kim C. Williamson
  • Patent number: 11753627
    Abstract: The invention relates to a dengue virus tetravalent vaccine containing a common 30 nucleotide deletion (?30) in the 3?-untranslated region of the genome of dengue virus serotypes 1, 2, 3, and 4, or antigenic chimeric dengue viruses of serotypes 1, 2, 3, and 4.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: September 12, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Stephen S. Whitehead, Brian R. Murphy, Lewis Markoff, Barry Falgout, Joseph Blaney, Kathryn Hanley, Ching-Juh Lai
  • Publication number: 20230271998
    Abstract: Disclosed herein are embodiments of a solid support suitable for synthesizing nucleic acid sequences. The solid support may have a structure according to Formula I, where CPG is controlled pore glass, and m, n, x, y, R1 and R2 are as defined herein. Also disclosed are methods for making and using the solid support, kits including solid support, and a universal linker phosphoramidite suitable for use in the solid support.
    Type: Application
    Filed: June 28, 2021
    Publication date: August 31, 2023
    Applicant: United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Serge L. Beaucage, Andrzej M. Grajkowski
  • Publication number: 20230272038
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR), wherein the TCR has antigenic specificity for a mutated human RAS amino acid sequence with a substitution of glycine at position 12 with aspartic acid. The TCRs may recognize G12D RAS presented by an HLA-DR heterodimer. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: July 13, 2021
    Publication date: August 31, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Noam Levin, Rami Yoseph, Gal Cafri, Steven A. Rosenberg
  • Patent number: 11739063
    Abstract: Disclosed is a compound of formula (I) in which R1, R2, and R3 are as described herein. Also provided are pharmaceutical compositions comprising the compound of formula (I) and methods of using the compound of formula (I), including a method of treating a disease or disorder and a method for effectuating a G-protein coupled receptor (GPCR)-mediated response in a subject.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: August 29, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, The Johns Hopkins University
    Inventors: Jordi Bonaventura, Juan Luis Gomez, Andrew Horti, Feng Hu, Michael Michaelides, Martin Pomper, Marta Sanchez-Soto
  • Publication number: 20230265508
    Abstract: Disclosed are methods for reprogramming cancer-reactive T cells into iPSC cells as well as methods utilizing such cells for the identification of cancer-antigen specific TCRs and the treatment of cancer.
    Type: Application
    Filed: August 20, 2021
    Publication date: August 24, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Raul E. Vizcardo, SM Rafiqul Islam, Naritaka Tamaoki, Takuya Maeda, Nicholas P. Restifo
  • Publication number: 20230266418
    Abstract: Diffusion sensitizing gradient pulse pairs are prescribed in a manner to mitigate effects of concomitant gradient artifacts. Measured MR signals generated by applying a plurality of diffusion sensitizing gradient matrices are obtained and processed to determine a second order mean diffusion tensor and a fourth order covariance tensor. Quantities derived from these tensors are measured and mapped within an imaging volume which describe features of diffusion anisotropy and heterogeneity within each imaging voxel.
    Type: Application
    Filed: July 8, 2021
    Publication date: August 24, 2023
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Services, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.
    Inventors: Magdoom Mohamed Kulam Najmudeen, Peter J. Basser, Michal E. Komlosh
  • Publication number: 20230265387
    Abstract: Methods of obtaining a cell population enriched for tumor-reactive T cells, the method comprising: (a) obtaining a bulk population of T cells from a tumor sample; (b) specifically selecting CD8+ T cells that express any one or more of TIM-3, LAG-3, 4-1BB, and PD-1 from the bulk population; and (c) separating the cells selected in (b) from unselected cells to obtain a cell population enriched for tumor-reactive T cells are disclosed. Related methods of administering a cell population enriched for tumor-reactive T cells to a mammal, methods of obtaining a pharmaceutical composition comprising a cell population enriched for tumor-reactive T cells, and isolated or purified cell populations are also disclosed.
    Type: Application
    Filed: January 6, 2023
    Publication date: August 24, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Alena Gros, Steven A. Rosenberg
  • Publication number: 20230258635
    Abstract: Disclosed are methods of obtaining a cell population enriched for T cells with a phenotype, the method comprising: (a) obtaining a bulk population of T cells from a tumor sample of a patient; (b) specifically selecting T cells with a phenotype comprising markers CD3+, CD39?, and CD69? from the bulk population; and (c) separating the cells selected in (b) from cells which lack the phenotype to obtain a cell population enriched for T cells with the phenotype. Related methods of treating or preventing cancer, methods of selecting a therapy for a cancer patient, and methods for predicting the clinical response to immunotherapy in a cancer patient are also disclosed. Isolated or purified cell population obtained according to the methods and related pharmaceutical compositions are also disclosed.
    Type: Application
    Filed: September 8, 2021
    Publication date: August 17, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Frank J. Lowery, III, Sri Krishna, Paul F. Robbins, Steven A. Rosenberg, Gregoire Y. Altan-Bonnet
  • Publication number: 20230257440
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR), wherein the TCR has antigenic specificity for a mutated human RAS amino acid sequence with a substitution of glycine at position 12 with valine. The TCRs may recognize G12V RAS presented by an HLA-DR heterodimer. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: July 15, 2021
    Publication date: August 17, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Noam Levin, Frank J. Lowery, III, Maria R. Parkhurst, Steven A. Rosenberg
  • Publication number: 20230257756
    Abstract: The disclosure provides methods for carrying out Real Time Cellular Thermal Shift Assays (RT-CETSA). Also provided are molecular constructs and protein constructs for use in such assays and devices suitable for carrying out such assays.
    Type: Application
    Filed: August 9, 2021
    Publication date: August 17, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Mark J. Henderson, Michael H. Ronzetti, Bolormaa Baljinnyam, Tino W. Sanchez, Samuel G. Michael, Ashley E. Owens, Anton Simeonov
  • Patent number: 11725248
    Abstract: The present invention provides methods of determining a survival predictor score of a subject having mantle cell lymphoma (MCL). The present invention also provides methods of predicting the survival outcome of a subject having MCL and provides methods of selecting a treatment for a subject having MCL.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 15, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, British Columbia Cancer Agency Branch, Julius-Maximilians-University of Würzburg, Oregon Health & Science University, Hospital Clinic de Barcelona, Universitat de Barcelona, Oslo University Hospital HF, The Cleveland Clinic Foundation, Mayo Foundation for Medical Education and Research
    Inventors: Louis M. Staudt, David William Scott, George W. Wright, Andreas Rosenwald, Pau Abrisqueta, Rita Braziel, Elias Campo Guerri, Wing C. Chan, Joseph M. Connors, Jan Delabie, Diego Villa, Kai Fu, Randy D. Gascoyne, Timothy Greiner, Elaine S. Jaffe, Pedro Jares, Anja Mottok, German Ott, Lisa M. Rimsza, Graham Slack, Dennis Weisenburger, Erlend B. Smeland, James Robert Cook
  • Patent number: 11723923
    Abstract: Provided herein are methods for delaying or inhibiting T cell maturation or differentiation in vitro for a T cell therapy, comprising contacting one or more T cells from a subject in need of a T cell therapy with an AKT inhibitor and at least one of exogenous Interleukin-7 (IL-7) and exogenous Interleukin-15 (IL-15), wherein the resulting T cells exhibit delayed maturation or differentiation. In some embodiments, the method further comprises administering the one or more T cells to a subject in need of a T cell therapy.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: August 15, 2023
    Assignees: Kite Pharma, Inc., The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Arianne Perez, Marianna Sabatino, Steven A. Rosenberg, Nicholas P. Restifo