Patents Assigned to Thermo Noran, Inc.
  • Patent number: 6882701
    Abstract: The invention provides a system and method for microscopic X-ray fluorescence. An X-ray source, X-ray focusing element and a tapered X-ray opaque focusing aperture provide a focused X-ray spot on a sample. The system translates a sample between an imaging position and a testing position. In the imaging position, the sample is aligned in three dimensions and after alignment, the system automatically translates the sample between the imaging position and the testing position. To avoid collision between the sample and other elements of the system, a position detecting device terminates the sample translation if the sample trips the position detecting device. The focusing aperture of the system has a tapered through opening to block unfocused X-rays and reduce or eliminate a halo effect. To detect low atomic number elements, a detector aperture is vacuum sealed to an X-ray detector and X-ray elements of the system are vacuum evacuated.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: April 19, 2005
    Assignee: Thermo Noran, Inc.
    Inventors: Frank H. Ferrandino, Weimin Si, Douglas S. Holmes, Harvey T. Stone
  • Patent number: 6555817
    Abstract: A system and method for correcting automatically the distortions in electron background diffration (EBSD) patterns which result from magnetic fields produced by some scanning electron microscopes (SEMs) used for collecting such patterns from polycrystalline sample materials. The method may be implemented as a software program running on a computer which is part of a conventional system for obtaining and analyzing EBSD patterns to obtain crystallographic information about the sample material. The method includes a calibration procedure and a correction procedure. In the calibration procedure, a distorted EBSD pattern obtained from a calibration sample is displayed on an operator display and user interface. Using an input device, an operator defines segment endpoints along a Kikuchi band in the distorted EBSD pattern image. From the user defined segment endpoints, correction parameters are calculated based on a mathematical curve (e.g., cubic spline) fitting the endpoints.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: April 29, 2003
    Assignee: Thermo Noran Inc.
    Inventors: David Rohde, Patrick P. Camus
  • Patent number: 6479818
    Abstract: An x-ray optic is employed in combination with an energy dispersive spectroscopy (EDS) detector to enhance detection performance. Such a combined optic and detector may be employed in scanning electron microscope or environmental scanning electron microscope (ESEM) applications. The x-ray optic may be a grazing incidence optic (GIO) employed as a flux enhancing collimator for use with an EDS detector, used to perform electron beam microanalysis. It is found that the GIO in combination with an EDS provides substantial intensity gain for x-ray lines with energy below 1 keV. The GIO is also found to provide a modest focus effect, i.e., by limiting the field of view of the detector, and introduces minimal spectral effects. The combined optic and detector is useful in applications employing broad beam excitation, such as an ESEM or a system using x-ray fluorescence, to spatially limit the x-rays of interest to those within the acceptance angle of the optic.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: November 12, 2002
    Assignee: Thermo Noran Inc.
    Inventors: Jon J. McCarthy, David J. McMillan
  • Patent number: 6449039
    Abstract: In laser scanning microscope systems using short pulsed laser sources incorporating an acousto-optical deflector, compensation is provided for spatial dispersion introduced by the deflector. Spatial dispersion of short pulses, such as those provided by a laser utilized in two photon fluorescence microscopy, occurs due to the higher and lower wavelength components in the pulsed laser beam as the beam is passed through an acousto-optical deflector or other similar diffractive element. A dispersive prism is mounted adjacent to the exit face of the acousto-optical deflector to spatially recombine the components of the pulse. A mirror may be mounted adjacent to the input face of the acousto-optical deflector and adjusted to adjust the angle of incidence of the beam on the input face of the deflector to match the Bragg condition at the center wavelength and so that both sides of the spectrum of the pulses are somewhat Bragg-mismatched and attenuated.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: September 10, 2002
    Assignee: Thermo Noran Inc.
    Inventor: Ahmed Bouzid