Patents Assigned to TRI-FORCE MANAGEMENT CORPORATION
  • Patent number: 10557764
    Abstract: A torque sensor including an annular deformation body, left side support body, right side support body, left side connection members which connect left side connection points of the annular deformation body with the left side support body, and right side connection members which connect right side connection points of the annular deformation body with the right side support body. Orthogonal projection images of the left side connection points on the basic plane and orthogonal projection images of the right side connection points on the basic plane are formed at mutually different positions.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: February 11, 2020
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Miho Okada
  • Patent number: 10557766
    Abstract: A torque sensor includes: an annular deformation body; first and second displacement electrodes which cause displacement by elastic deformation of the annular deformation body; first and second fixed electrodes arranged at positions opposite the first and second displacement electrodes; and a detection circuit that outputs an electric signal indicating a torque based on a variation amount of capacitance values of first and second capacitive elements each of which is configured of the displacement electrode and the fixed electrode. The annular deformation body includes a high elastic portion and a low elastic portion having a spring constant smaller than a spring constant of the high elastic portion. The detection circuit determines whether the torque sensor functions normally based on a ratio between first and second electric signals.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: February 11, 2020
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Miho Okada
  • Patent number: 10547253
    Abstract: There is provided a power generating element which is capable of converting vibration energy in various directions into electric energy without waste and less likely to be damaged even upon application of excessive vibration. Made available is a main generating structure (MGS) in which a first layer (100), a second layer (200) and a third layer (300) are laminated. The second layer (200) has a plate-like bridge portion (210), a central plate-like portion (220), a left-hand side plate-like portion (230) and a right-hand side plate-like portion (240), each of which is flexible, and the third layer (300), that is a weight body, formed in the “U” letter shape is joined with the lower surface thereof. The plate-like bridge portion (210) is protected by the weight body (300) circumference thereof.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 28, 2020
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Miho Okada
  • Publication number: 20200003640
    Abstract: The present invention provides a torque sensor that is small and highly rigid and for which high production efficiency is possible. An annular deformation body (50) is disposed between a left side support body (10) and a right side support body (20). Protruding parts (11, 12) of the left side support body (10) are joined to two upper and lower sites on the left side surface of the annular deformation body (50), and protruding parts (21, 22) of the right side support body (20) are joined to two left and right sites on the right side surface of the annular deformation body (50). The annular deformation body (50) has, at four sites, detection parts (D1 to D4) that cause elastic deformation, the right side surface of each of the detection parts (D1 to D4) moves close to or moves away from the opposing surface of the right side support body (20) when torque around the Z axis is exerted on the left side support body (10) in a state that a load is applied to the right side support body (20).
    Type: Application
    Filed: July 1, 2019
    Publication date: January 2, 2020
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Patent number: 10488280
    Abstract: A capacitive force sensor that is inexpensive but highly sensitive, and hardly affected by temperature changes and in-phase noise in the use environment is provided. a capacitive force sensor that is inexpensive but highly sensitive, and is hardly affected by temperature changes and in-phase noise in the use environment. A force sensor includes: a deformable body having a force receiving portion and a fixed portion; a displacement body that is connected to the deformable body, and is displaced by elastic deformation caused in the deformable body; and a detection circuit that detects an applied force, in accordance with the displacement caused in the displacement body. The deformable body includes a tilting portion that has a longitudinal direction and is disposed between the force receiving portion and the fixed portion. The displacement body includes displacement portions that are connected to the tilting portion and are displaced by tilting movement of the tilting portion.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: November 26, 2019
    Assignee: Tri-Force Management Corporation
    Inventors: Kazuhiro Okada, Satoshi Era, Miho Okada
  • Patent number: 10468997
    Abstract: A tabular structure having flexibility extends from a root end portion to a distal end portion along a reference axis. The root end portion is fixed to a pedestal. Three sectioned parts are provided in the tabular structure. Weights are joined to the lower surfaces of the respective three sectioned parts. The three sectioned parts respectively have different thicknesses. As a result, spring constants are different. When vibration energy from the outside is applied to the pedestal, the weights vibrate and a bend occurs in the tabular structure. If a charge generating element such as a piezoelectric element is stuck to the tabular structure, an electric charge is generated by bending stress. A frequency band capable of generating electric power is expanded by providing a plurality of weights in the tabular structure in which the spring constants are different in each of the sectioned parts.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: November 5, 2019
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Miho Okada
  • Publication number: 20190323904
    Abstract: The present invention is to provide a capacitive force sensor that is inexpensive but highly sensitive, and is hardly affected by temperature changes and in-phase noise in the use environment. A force sensor 100c includes: a deformable body 10 having a force receiving portion 14 and a fixed portion 15; a displacement body 20 that is connected to the deformable body 10, and is displaced by elastic deformation caused in the deformable body 10; and a detection circuit 40 that detects an applied force, in accordance with the displacement caused in the displacement body 20. The deformable body 10 includes a tilting portion 13 that has a longitudinal direction 1 and is disposed between the force receiving portion 14 and the fixed portion 15. The displacement body 20 includes displacement portions D1 and D2 that are connected to the tilting portion 13 and are displaced by tilting movement of the tilting portion 13.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Satoshi ERA, Miho OKADA
  • Publication number: 20190280626
    Abstract: There is provided a power generating element which is capable of converting vibration energy in various directions into electric energy without waste and less likely to be damaged even upon application of excessive vibration. Made available is a main generating structure (MGS) in which a first layer (100), a second layer (200) and a third layer (300) are laminated. The second layer (200) has a plate-like bridge portion (210), a central plate-like portion (220), a left-hand side plate-like portion (230) and a right-hand side plate-like portion (240), each of which is flexible, and the third layer (300), that is a weight body, formed in the “U” letter shape is joined with the lower surface thereof. The plate-like bridge portion (210) is protected by the weight body (300) circumference thereof.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 12, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20190212215
    Abstract: A force sensor includes: a deformable body having a force receiving portion and a fixed portion; a displacement body configured to generate a displacement by elastic deformation generated in the deformable body; and a detection circuit configured to detect an applied force on the basis of the displacement generated in the displacement body, in which the deformable body includes: a tilting portion arranged between the force receiving portion and the fixed portion; a first deformable portion that connects the force receiving portion and the tilting portion; and a second deformable portion that connects the fixed portion and the tilting portion, the displacement body includes a displacement portion connected to the tilting portion and separated from the fixed portion, the detection circuit includes a first displacement sensor and a second displacement sensor arranged in the displacement portion, and the detection circuit outputs a first electric signal indicating an applied force on the basis of a detection valu
    Type: Application
    Filed: January 9, 2018
    Publication date: July 11, 2019
    Applicant: Tri-Force Management Corporation
    Inventors: Kazuhiro OKADA, Miho OKADA, Satoshi ERA
  • Publication number: 20190190405
    Abstract: A power generating element according to the present invention includes: a support frame formed in a frame shape in plan view; a vibrating body provided inside the support frame; a first bridge portion and a second bridge portion that supports the vibrating body on the support frame; and a charge generating element to generate a charge at the time of displacement of the vibrating body. The support frame includes a first frame portion arranged on a first side with respect to the vibrating body and includes a second frame portion arranged on a second side opposite to the first side with respect to the vibrating body. The first bridge portion couples the vibrating body with the first frame portion. The second bridge portion couples the vibrating body with the second frame portion.
    Type: Application
    Filed: July 26, 2017
    Publication date: June 20, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA, Satoshi ERA
  • Patent number: 10284119
    Abstract: There is provided a power generating element which is capable of converting vibration energy in various directions into electric energy without waste and less likely to be damaged even upon application of excessive vibration. Made available is a main generating structure (MGS) in which a first layer (100), a second layer (200) and a third layer (300) are laminated. The second layer (200) has a plate-like bridge portion (210), a central plate-like portion (220), a left-hand side plate-like portion (230) and a right-hand side plate-like portion (240), each of which is flexible, and the third layer (300), that is a weight body, formed in the “U” letter shape is joined with the lower surface thereof. The plate-like bridge portion (210) is protected by the weight body (300) circumference thereof.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: May 7, 2019
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Miho Okada
  • Publication number: 20190131890
    Abstract: A power generating element 1 according to an embodiment includes a displacement member 10, a displacement member 20, and a fixed member 30. The displacement member 10 and the displacement member 20 are connected via an elastic deformation body 41. The displacement member 10 is connected to an attachment section 51 via an elastic deformation body 42. The displacement member 10 and/or the displacement member 20 includes a first power generation surface. The fixed member 30 includes a second power generation surface opposed to the first power generation surface. An electret material layer is provided on one surface of the first power generation surface and the second power generation surface. A counter electrode layer is provided on the other surface.
    Type: Application
    Filed: April 5, 2017
    Publication date: May 2, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20190113407
    Abstract: A force sensor according to the present invention is configured to detect at least one component among components of a force in each axis direction in an XYZ three-dimensional coordinate system and a moment around each axis, and includes: a support body arranged on an XY plane; a deformation body joined to the support body; and a detection circuit that outputs an electric signal indicating a force applied on the deformation body.
    Type: Application
    Filed: August 29, 2016
    Publication date: April 18, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20190094086
    Abstract: The present invention is to provide a capacitive force sensor that is inexpensive but highly sensitive, and is hardly affected by temperature changes and in-phase noise in the use environment. A force sensor 100c includes: a deformable body 10 having a force receiving portion 14 and a fixed portion 15; a displacement body 20 that is connected to the deformable body 10, and is displaced by elastic deformation caused in the deformable body 10; and a detection circuit 40 that detects an applied force, in accordance with the displacement caused in the displacement body 20. The deformable body 10 includes a tilting portion 13 that has a longitudinal direction I and is disposed between the force receiving portion 14 and the fixed portion 15. The displacement body 20 includes displacement portions D1 and D2 that are connected to the tilting portion 13 and are displaced by tilting movement of the tilting portion 13.
    Type: Application
    Filed: March 20, 2018
    Publication date: March 28, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Satoshi ERA, Miho OKADA
  • Publication number: 20190068087
    Abstract: A power generating element is provided that includes first and second plate-like structures, a pedestal that supports the first plate-like structure, and first and second piezoelectric elements that generate charges on the basis of the deflections of the two plate-like structures. A base end portion of the first plate-like structure is connected to the pedestal, and a direction from the base end portion toward the tip end portion of the first plate-like structure is a Y-axis positive direction. A base end portion of the second plate-like structure is connected to the tip end portion of the first plate-like structure via a connection body, and a direction from the base end portion toward the tip end portion of the second plate-like structure is a Y-axis negative direction.
    Type: Application
    Filed: March 12, 2018
    Publication date: February 28, 2019
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Patent number: 10209151
    Abstract: An inner support member, a detection deformable body, and a ring-shaped outer support member are disposed sequentially from the inside to the outside around a Z axis as a central axis. Inner surfaces in the vicinity of inner support points of the detection deformable body connect to outer surfaces of the inner support member via inner connecting members, and outer surfaces in the vicinity of outer support points of the detection deformable body connect to inner surfaces of the outer support member via outer connecting members. When a torque acts in the clockwise direction on the outer support member (130) while the inner support member is fixed, detection parts are displaced outwardly, and detection parts are displaced inwardly. These displacements are detected electrically as changes in capacitance values of four capacitor elements including opposing electrodes.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: February 19, 2019
    Assignees: TRI-FORCE MANAGEMENT CORPORATION, DAI-ICHI SEIKO CO., LTD.
    Inventors: Kazuhiro Okada, Satoshi Era, Nobuhiro Nagamoto, Takahito Kamiudo, Kazuto Akiba
  • Patent number: 10177689
    Abstract: The power generation efficiency is to be enhanced by converting vibration energy including various direction components into electric energy without waste. A cantilever structure is adopted, in which a first plate-like bridge portion (120) and a second plate-like bridge portion (130) extend in a shape of a letter U from a fixing-portion (110) fixed to the device housing (200) and a weight body (150) is connected to the end. On the upper surface of the cantilever structure, a common lower layer electrode (E00), a layered piezoelectric element (300) and discrete upper layer electrodes (Ex1 to Ez4) are formed. The upper layer electrodes (Ez1 to Ez4) disposed on a center line (Lx, Ly) of each plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the Z-axis direction vibration of the weight body (150).
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 8, 2019
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Satoshi Era, Miho Okada
  • Publication number: 20180348074
    Abstract: A torque sensor according to the present invention includes: an annular deformation body; first and second displacement electrodes which cause displacement by elastic deformation of the annular deformation body; first and second fixed electrodes arranged at positions opposite to the first and second displacement electrodes; and a detection circuit that outputs an electric signal indicating a torque based on a variation amount of capacitance values of first and second capacitive elements each of which is configured of the displacement electrode and the fixed electrode. The annular deformation body includes a high elastic portion and a low elastic portion having a spring constant smaller than a spring constant of the high elastic portion.
    Type: Application
    Filed: July 20, 2016
    Publication date: December 6, 2018
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20180294746
    Abstract: Provided is a power generating element and a power generating device capable of using vibration energy not used for power generation in the past. The power generating element includes a displacement member, a fixed member, and an elastic deformation body. An electret material layer is formed on a surface of one of the displacement member and the fixed member. A counter electrode layer opposed to the electret material layer is formed on the other surface. When vibration energy is given to the power generating element, the displacement member is displaced with respect to the fixed member such that an inter-layer distance between the electret material layer and the counter electrode layer fluctuates according to deformation of the elastic deformation body.
    Type: Application
    Filed: February 8, 2018
    Publication date: October 11, 2018
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20180259404
    Abstract: A force sensor of the present invention includes: a supporting body arranged on an X-Y plane; a deformation body arranged opposite to the supporting body and having a deformation part elastically deformed by an action of a force to be detected; a fixed electrode arranged on the supporting body; a displacement electrode provided to the deformation part of the deformation body in such a manner as to face the fixed electrode with which it forms a capacitive element; and a detection circuit that outputs an electrical signal representing the acting force based on a variation amount of a capacitance value of the capacitive element, wherein the capacitive element includes a first capacitive element and a second capacitive element, and the detection circuit determines whether the force sensor is normally functioning based on a first electrical signal corresponding to a capacitance value of the first capacitive element, a second electrical signal corresponding to a capacitance value of the second capacitive element, a
    Type: Application
    Filed: June 9, 2016
    Publication date: September 13, 2018
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA, Nobuhisa NISHIOKI