Patents Assigned to TrueDyne Sensors AG
  • Patent number: 11768094
    Abstract: The present disclosure relates to a method for determining a volumetric and/or mass flow rate of a medium flowing in a tube, wherein a density and/or a viscosity of the fluid is/are determined using a MEMS sensor chip, wherein the medium flowing in the tube at least partially flows through a measuring channel of the MEMS sensor chip to determine the density and/or the viscosity of the fluid, and wherein the volumetric and/or mass flow rate of the medium is determined regardless of the medium based on a detected pressure drop over the measuring channel of the MEMS sensor chip and the density and/or viscosity determined by the MEMS sensor.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 26, 2023
    Assignee: TrueDyne Sensors AG
    Inventors: Patrick Reith, Christof Huber
  • Patent number: 11428553
    Abstract: The invention relates to a method for producing a customer-specific sensor on the basis of a standard sensor using a sensor development package, the sensor development package comprising at least the standard sensor and a customization unit, and the method for producing the customer-specific sensor having at least the following steps: customizing the customization unit to an application designated by a customer; introducing the sensor development package into the designated application of the customer so that the customer can test the sensor development package in the application; testing the sensor development package introduced into the designated application, by the customer; and producing the customer-specific sensor.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 30, 2022
    Assignee: TRUEDYNE SENSORS AG
    Inventors: Josua Ritter, Patrick Reith, Fabio Schraner
  • Patent number: 10935404
    Abstract: A MEMS sensor for measuring at least one measured variable, especially a density, a flow and/or a viscosity, a flowing fluid, is described, comprising: at least one microfluidic channel having a channel section excitable to execute oscillations; and an exciter system for exciting a desired oscillation mode, causing the channel section to execute oscillations in a predetermined plane of oscillation. The MEMS sensor has improved oscillation characteristics at least in part because the channel section is composed of an anisotropic material, having directionally dependent elasticity and which is spatially oriented such that a modulus of elasticity determinative for a stiffness of the channel section relative to deflections of the channel section perpendicular to the plane of oscillation is greater than a modulus of elasticity determinative for a stiffness of the channel section relative to deflections of the channel section in the plane of oscillation.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 2, 2021
    Assignee: TrueDyne Sensors AG
    Inventors: Patrick Reith, Christof Huber, Hagen Feth