Patents Assigned to United Microelectronics Corp.
  • Publication number: 20240097004
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, a channel layer on the substrate, a barrier layer on the channel layer, a gate structure on the barrier layer, a gate spacer on the gate structure, and a gate contact on the gate spacer. The gate contact includes a first portion and a second portion respectively at two sides of the gate spacer and directly contacting the gate structure.
    Type: Application
    Filed: October 14, 2022
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Publication number: 20240097038
    Abstract: A semiconductor device, including a substrate, a first source/drain region, a second source/drain region, and a gate structure, is provided. The substrate has an extra body portion and a fin protruding from a top surface of the substrate, wherein the fin spans the extra body portion. The first source/drain region and the second source/drain region are in the fin. The gate structure spans the fin, is located above the extra body portion, and is located between the first source/drain region and the second source/drain region.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 21, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Yi Chuen Eng, Tzu-Feng Chang, Teng-Chuan Hu, Yi-Wen Chen, Yu-Hsiang Lin
  • Patent number: 11935947
    Abstract: An enhancement mode high electron mobility transistor (HEMT) includes a group III-V semiconductor body, a group III-V barrier layer and a gate structure. The group III-V barrier layer is disposed on the group III-V semiconductor body, and the gate structure is a stacked structure disposed on the group III-V barrier layer. The gate structure includes a gate dielectric and a group III-V gate layer disposed on the gate dielectric, and the thickness of the gate dielectric is between 15 nm to 25 nm.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Tung Yeh, Chun-Ming Chang, Bo-Rong Chen, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11934106
    Abstract: An optical proximity correction (OPC) device and method is provided. The OPC device includes an analysis unit, a reverse pattern addition unit, a first OPC unit, a second OPC unit and an output unit. The analysis unit is configured to analyze a defect pattern from a photomask layout. The reverse pattern addition unit is configured to provide a reverse pattern within the defect pattern. The first OPC unit is configured to perform a first OPC procedure on whole of the photomask layout. The second OPC unit is configured to perform a second OPC procedure on the defect pattern of the photomask layout to enhance an exposure tolerance window. The output unit is configured to output the photomask layout which is corrected.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shu-Yen Liu, Hui-Fang Kuo, Chian-Ting Huang, Wei-Cyuan Lo, Yung-Feng Cheng, Chung-Yi Chiu
  • Patent number: 11935854
    Abstract: A method for forming a bonded semiconductor structure is disclosed. A first device wafer having a first bonding layer and a first bonding pad exposed from the first bonding layer and a second device wafer having a second bonding layer and a second bonding pad exposed from the second bonding layer are provided. Following, a portion of the first bonding pad is removed until a sidewall of the first bonding layer is exposed, and a portion of the second bonding layer is removed to expose a sidewall of the second bonding pad. The first device wafer and the second device wafer are then bonded to form a dielectric bonding interface between the first bonding layer and the second bonding layer and a conductive bonding interface between the first bonding pad and the second bonding pad. The conductive bonding interface and the dielectric bonding interface comprise a step-height.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Patent number: 11935948
    Abstract: An HEMT includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer is different from the composition of the second III-V compound layer. A third III-V compound layer is disposed on the second III-V compound layer. The first III-V compound layer and the third III-V compound layer are composed of the same group III-V elements. The third III-V compound layer includes a body and numerous finger parts. Each of the finger parts is connected to the body. All finger parts are parallel to each other and do not contact each other. A source electrode, a drain electrode and a gate electrode are disposed on the first III-V compound layer.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Patent number: 11935788
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A singulation process is performed to a semiconductor wafer for forming semiconductor dies and includes a first cutting step, a thinning step, and a second cutting step. The first cutting step is configured to form first openings in the semiconductor wafer by etching. A portion of the semiconductor wafer is located between each first opening and a back surface and removed by the thinning step. Each first opening penetrates through the semiconductor wafer after the thinning step. The second cutting step is configured to form second openings. Each second opening penetrates through the semiconductor wafer for separating the semiconductor dies. A semiconductor die includes two first side surfaces opposite to each other and two second side surfaces opposite to each other. A roughness of each first side surface is different from a roughness of each second side surface.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Publication number: 20240088293
    Abstract: An n-type metal oxide semiconductor transistor includes a gate structure, two source/drain regions, two amorphous portions and a silicide. The gate structure is disposed on a substrate. The two source/drain regions are disposed in the substrate and respectively located at two sides of the gate structure, wherein at least one of the source/drain regions is formed with a dislocation. The two amorphous portions are respectively disposed in the two source/drain regions. The silicide is disposed on the two source/drain regions, wherein at least one portion of the silicide overlaps the two amorphous portions.
    Type: Application
    Filed: October 5, 2022
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ya Chiu, Ssu-I Fu, Chin-Hung Chen, Jin-Yan Chiou, Wei-Chuan Tsai, Yu-Hsiang Lin
  • Publication number: 20240088279
    Abstract: A method for forming a semiconductor structure includes the steps of forming a stacked structure on a substrate, forming an insulating layer on the stacked structure, forming a passivation layer on the insulating layer, performing an etching process to form an opening through the passivation layer and the insulating layer to expose a portion of the stacked structure and an extending portion of the insulating layer, and forming a contact structure filling the opening and directly contacting the stacked structure, wherein the extending portion of the insulating layer is adjacent to a surface of the stacked structure directly contacting the contact structure.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Chang, Po-Wen Su, Chih-Tung Yeh
  • Publication number: 20240090341
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a second IMD layer around the first MTJ; removing the sacrificial layer to form a recess; forming a barrier layer and a free layer in the recess; forming a top electrode layer on the free layer; and patterning the top electrode layer and the free layer to form a second MTJ.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Ya-Sheng Feng
  • Publication number: 20240090233
    Abstract: A semiconductor device includes a sense amplifier, a first magnetic tunneling junction (MTJ) connected to the sense amplifier at a first distance, a second MTJ connected to the sense amplifier at a second distance, and a third MTJ connected to the sense amplifier at a third distance. Preferably, the first distance is less than the second distance, the second distance is less than the third distance, a critical dimension of the first MTJ is less than a critical dimension of the second MTJ, and the critical dimension of the second MTJ is less than a critical dimension of the third MTJ.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wei Wang, Yi-An Shih, Huan-Chi Ma
  • Publication number: 20240090342
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a second IMD layer around the first MTJ; removing the sacrificial layer to form a recess; forming a barrier layer and a free layer in the recess; forming a top electrode layer on the free layer; and patterning the top electrode layer and the free layer to form a second MTJ.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Ya-Sheng Feng
  • Publication number: 20240085780
    Abstract: A photomask structure having a first region and a second region is provided. The layout pattern density of the first region is smaller than the layout pattern density of the second region. The photomask structure includes a first layout pattern, a second layout pattern, and first assist patterns. The first layout pattern is located in the first region and the second region. The second layout pattern is located in the second region. The second layout pattern is located on one side of the first layout pattern. The first assist patterns are located on the first sidewall of the first layout pattern and separated from each other. The first sidewall is adjacent to the second layout pattern. The first assist patterns are adjacent to a boundary between the first region and the second region. The lengths of two adjacent first assist patterns decrease in the direction away from the boundary.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 14, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Chen Sun, En-Chiuan Liou, Song-Yi Lin
  • Publication number: 20240090234
    Abstract: A magnetoresistive random access memory (MRAM) includes a first transistor and a second transistor on a substrate, a source line coupled to a first source/drain region of the first transistor, and a first metal interconnection coupled to a second source/drain region of the first transistor. Preferably, the first metal interconnection is extended to overlap the first transistor and the second transistor and the first metal interconnection further includes a first end coupled to the second source/drain region of the first transistor and a second end coupled to a magnetic tunneling junction (MTJ).
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Te-Wei Yeh, Chien-Liang Wu
  • Patent number: 11929335
    Abstract: A semiconductor structure for wafer level bonding includes a bonding dielectric layer disposed on a substrate and a bonding pad disposed in the bonding dielectric layer. The bonding pad includes a top surface exposed from the bonding dielectric layer, a bottom surface opposite to the top surface, and a sidewall between the top surface and the bottom surface. A bottom angle between the bottom surface and sidewall of the bonding pad is smaller than 90 degrees.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Chien-Ming Lai
  • Patent number: 11929418
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 11929431
    Abstract: A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed on the shallow recess.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai
  • Patent number: 11927887
    Abstract: An optical proximity correction (OPC) operation method and an OPC operation device are provided. The OPC operation method includes the following steps. A mask layout is obtained. If the mask layout contains at least one defect hotspot, at least one partial area pattern is extracted from the mask layout according to the at least defect hotspot. A machine learning model is used to analyze the local area pattern to obtain at least one OPC strategy. The OPC strategy is implemented to correct the mask layout.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Guo-Xin Hu, Yuh-Kwei Chao, Chung-Yi Chiu
  • Patent number: 11929213
    Abstract: A structure of capacitors connected in parallel includes a substrate. A trench embedded in the substrate. Numerous electrode layers respectively conformally fill in and cover the trench. The electrode layers are formed of numerous nth electrode layers, wherein n is a positive integer from 1 to M, and M is not less than 3. The nth electrode layer with smaller n is closer to the sidewall of the trench. When n equals to M, the Mth electrode layer fills in the center of the trench, and the top surface of the Mth electrode is aligned with the top surface of the substrate. A capacitor dielectric layer is disposed between the adjacent electrode layers. A first conductive plug contacts the nth electrode layer with odd-numbered n. A second conductive plug contacts the nth electrode layer with even-numbered n.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Xingxing Chen, Chao Jin