Patents Assigned to Unity Biotechnology, Inc.
  • Patent number: 11980616
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 14, 2024
    Assignees: Mayo Foundation for Medical Education and Research, Buck Institute for Research on Aging, Unity Biotechnology, Inc.
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, James L. Kirkland, Tamar Tchkonia, Yi Zhu
  • Patent number: 11963957
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: April 23, 2024
    Assignees: Mayo Foundation for Medical Education and Research, Unity Biotechnology, Inc., Buck Institute for Research on Aging
    Inventors: Remi-Martin Laberge, Judith Campisi, Albert Davalos, Marco Demaria, Nathaniel David, Jan M. A. van Deursen, Darren J. Baker, Bennett G. Childs
  • Patent number: 11951115
    Abstract: The present invention relates to methods of treating certain retinal vasculopathies such as diabetic macular edema, diabetic retinopathy and age-related macular degeneration, among others. The method includes treating a patient suffering from a retinal vasculopathy by administering to the patient a therapeutically effective dose of a compound as disclosed herein.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: April 9, 2024
    Assignee: Unity Biotechnology, Inc.
    Inventors: Sharon Klier, Jamie Dananberg
  • Patent number: 11865123
    Abstract: This invention is based on the discovery that many eye conditions associated with aging are mediated at least in part by cells bearing a senescent phenotype. Senescent cells accumulate with age, and express factors that contribute to the pathophysiology of age related conditions. The data show that in age-matched patients, the severity of age-related conditions correlates with the abundance of senescent cells, and that clearing senescent cells can help abrogate the condition. Small molecule drugs that remove senescent cells from affected tissue in the eye are provided that have special efficacy in treating ophthalmic conditions. They not only inhibit progression of the disease, they can also reverse some of the pathophysiology—such as neovascularization and vaso-obliteration—that lead to vision loss. These senolytic agents have an appropriate dose and specificity profile to be effective in the clinical management of previously intractable ophthalmic conditions.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: January 9, 2024
    Assignee: Unity Biotechnology, Inc.
    Inventors: Pam Tsuruda, Jill Hopkins, Harry Sweigard, Yan Poon, Jamie Dananberg, Daniel Marquess, Nathaniel David
  • Patent number: 11351167
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 7, 2022
    Assignees: Buck Institute for Research on Aging, Mayo Foundation for Medical Education and Research, Unity Biotechnology, Inc.
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Darren J. Baker, Jan M. A. van Deursen
  • Patent number: 11129838
    Abstract: This invention is based on the discovery that many eye conditions associated with aging are mediated at least in part by cells bearing a senescent phenotype. Senescent cells accumulate with age, and express factors that contribute to the pathophysiology of age related conditions. The data show that in age-matched patients, the severity of age-related conditions correlates with the abundance of senescent cells, and that clearing senescent cells can help abrogate the condition. Small molecule drugs that remove senescent cells from affected tissue in the eye are provided that have special efficacy in treating ophthalmic conditions. They not only inhibit progression of the disease, they can also reverse some of the pathophysiology—such as neovascularization and vaso-obliteration—that lead to vision loss. These senolytic agents have an appropriate dose and specificity profile to be effective in the clinical management of previously intractable ophthalmic conditions.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: September 28, 2021
    Assignee: Unity Biotechnology, Inc.
    Inventors: Pam Tsuruda, Jill Hopkins, Harry Sweigard, Yan Poon, Jamie Dananberg, Daniel Marquess, Nathaniel David
  • Patent number: 11111259
    Abstract: Compounds represented by Formula (I) and (II) and salts thereof are described herein. The compounds or salts of Formula (I) and (II) may be used to treat senescence-associated diseases and disorders.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 7, 2021
    Assignee: Unity Biotechnology, Inc.
    Inventors: Bradley Backes, Thomas W. von Geldern, Bing Chen
  • Patent number: 10981892
    Abstract: The aryl sulfonamide compounds of this invention have powerful and cell-type specific Bcl inhibitory activity. Selected compounds in this class promote apoptosis in senescent cells, and are being developed for treating senescent-related conditions. Selected compounds in this class promote apoptosis in cancer cells, and can be developed as chemotherapeutic agents.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: April 20, 2021
    Assignee: Unity Biotechnology, Inc.
    Inventors: Anne-Marie Beausoleil, Ryan Hudson
  • Patent number: 10745445
    Abstract: Disclosed are agents (e.g., peptides, polypeptides, proteins, small molecules, antibodies, and antibody fragments that target senescent cells) and methods of their use for imaging senescent cells in vivo and for treating or preventing cancer, age-related disease, tobacco-related disease, or other diseases and disorders related to or caused by cellular senescence in a mammal. The methods include administering one or more of the agents of the invention to a mammal, e.g., a human. The agents, which specifically bind to senescent cells, can be labeled with a radioactive label or a therapeutic label, e.g., a cytotoxic agent.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: August 18, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventor: Shayne Squires
  • Patent number: 10745429
    Abstract: This disclosure provides compounds with Bcl inhibitory activity based on a new chemical scaffold, as shown in Formula (I). The phospholidine compounds can include a P-phenyl phospholidine moiety which is substituted with an N-aryl or N-heteroaryl group. The P-phenyl phospholidine moiety can be optionally substituted at phosphorus with thio (?S) instead of oxo (?O). A second heteroatom attached to phosphorus can be cyclically linked to the N-substituted nitrogen atom of the phospholidine that is attached to the phosphorus to provide, together with the phosphorus atom through which they are connected, a heterocyclic ring. By incorporating such a cyclic constraint between two phosphorus substituents of the core linking moiety a favorable binding conformation can be promoted in the compounds. Selected compounds promote apoptosis in senescent cells, and can be developed for treating senescent-related conditions, such as osteoarthritis, ophthalmic disease, pulmonary disease, and atherosclerosis.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 18, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventors: Anne-Marie Beausoleil, Ryan Hudson
  • Patent number: 10738042
    Abstract: This disclosure provides compounds with Bcl inhibitory activity based on a new chemical scaffold, as shown in Formula (I): Phosphonamidate compounds disclosed herein typically include a P-phenyl phosphonamidate moiety which is substituted with an N-aryl or N-heteroaryl group. The P-phenyl phosphonamidate moiety may be optionally substituted at phosphorus with thio (?S) instead of oxo (?O), and/or with a thioxy group or a second amino group instead of an oxy group. One of the heteroatoms attached to phosphorus may be cyclically linked to the N-substituted nitrogen atom that is attached to the phosphorus to provide a heterocyclic ring. By incorporating such a cyclic constraint between two phosphorus substituents of the core linking moiety, a favorable binding conformation may be promoted in the compounds. Selected compounds promote apoptosis in senescent cells, and can be developed for treating senescent-related conditions, such as osteoarthritis, ophthalmic disease, pulmonary disease, and atherosclerosis.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 11, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventors: Anne-Marie Beausoleil, Ryan Hudson
  • Patent number: 10717722
    Abstract: The aryl sulfonamide compounds of this invention have powerful and cell-type specific Bcl inhibitory activity. Compounds of this invention include compounds according to formula (I): Selected compounds in this class promote apoptosis in senescent cells, and are being developed for treating senescent-related conditions. Selected compounds in this class promote apoptosis in cancer cells, and can be developed as chemotherapeutic agents.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: July 21, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventors: Anne-Marie Beausoleil, Ryan Hudson
  • Patent number: 10703745
    Abstract: This disclosure provides compounds with Bcl inhibitory activity based on a new chemical scaffold. Acyl phosphonamidate compounds may include a P-phenyl phosphonamidate moiety which is N-acylated with an aroyl or heteroaroyl group. The P-phenyl phosphonamidate moiety can be optionally substituted at phosphorus with thio (?S) instead of oxo (?O), and/or with a thioxy group or a second amino group instead of an oxy group. One of the heteroatoms attached to phosphorus can be cyclically linked to a carbon atom of the adjacent phenyl ring attached to the phosphorus to provide, together with the phosphorus atom through which they are connected, a heterocyclic ring. By incorporating such a cyclic constraint between two phosphorus substituents of the core linking moiety a favorable binding conformation can be promoted in the compounds.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: July 7, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventors: Anne-Marie Beausoleil, Ryan Hudson
  • Patent number: 10689416
    Abstract: The proteasome inhibitors of this invention include peptide-based compounds with a short linear sequence of amino acids. An oxo or thio group is attached to the N-terminal amino acid. A protein-reactive electrophilic group such as an epoxyketone, an aziridinylketone, or a beta-lactone is attached to the C-terminal amino acid. Upon contact with a proteasome complex in a target cell, the electrophilic group reacts with a functional group in or near a binding pocket or active site of the proteasome, forming a covalent bond and thereby inactivating the proteasome. These and other proteasome inhibitors can be screened for binding affinity and an ability to selectively eliminate senescent cells or cancer cells. Compounds that selectively remove senescent cells can be developed for the treatment of conditions such as osteoarthritis, ophthalmic disease, pulmonary disease, and atherosclerosis.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: June 23, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventors: Ryan Hudson, Anne-Marie Beausoleil, F. Anthony Romero, Remi-Martin Laberge
  • Patent number: 10588916
    Abstract: This invention is based on the discovery that many eye conditions associated with aging are mediated at least in part by cells bearing a senescent phenotype. Senescent cells accumulate with age, and express factors that contribute to the pathophysiology of age related conditions. The data show that in age-matched patients, the severity of age-related conditions correlates with the abundance of senescent cells, and that clearing senescent cells can help abrogate the condition. Small molecule drugs that remove senescent cells from affected tissue in the eye are provided that have special efficacy in treating ophthalmic conditions. They not only inhibit progression of the disease, they can also reverse some of the pathophysiology—such as neovascularization and vaso-obliteration—that lead to vision loss. These senolytic agents have an appropriate dose and specificity profile to be effective in the clinical management of previously intractable ophthalmic conditions.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 17, 2020
    Assignee: Unity Biotechnology, Inc.
    Inventors: Pam Tsuruda, Jill Hopkins, Harry Sweigard, Yan Poon, Jamie Dananberg, Daniel Marquess, Nathaniel David
  • Patent number: 10550378
    Abstract: Polypeptides, viruses, methods and compositions provided herein are useful for the selective elimination of senescent cells. Method aspects include methods for inducing apoptosis in a senescent cell comprising administering to the cell a polynucleotide, virus, host cell, or pharmaceutical composition described herein. Other methods include expressing a pro-apoptotic gene in a senescent cell comprising administering to the cell the polynucleotide, virus, or pharmaceutical composition as described herein.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 4, 2020
    Assignees: Unity Biotechnology, Inc., Kythera Biopharmaceuticals, Inc.
    Inventors: Serge Lichtsteiner, Nathaniel David
  • Patent number: 10517866
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: December 31, 2019
    Assignees: Unity Biotechnology, Inc., Buck Institute for Research on Aging, Mayo Foundation for Medical Education and Research
    Inventors: Remi-Martin Laberge, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Nathaniel David, Alain Philippe Vasserot, Darren J. Baker, Bennett G. Childs, Jan M. A. van Deursen
  • Patent number: 10519197
    Abstract: The proteasome inhibitors of this invention include peptide-based compounds with a short linear sequence of amino acids. An oxo or thio group is attached to the N-terminal amino acid. A protein-reactive electrophilic group such as an epoxyketone, an aziridinylketone, or a beta-lactone is attached to the C-terminal amino acid. Upon contact with a proteasome complex in a target cell, the electrophilic group reacts with a functional group in or near a binding pocket or active site of the proteasome, forming a covalent bond and thereby inactivating the proteasome. These and other proteasome inhibitors can be screened for binding affinity and an ability to selectively eliminate senescent cells or cancer cells. Compounds that selectively remove senescent cells can be developed for the treatment of conditions such as osteoarthritis, ophthalmic disease, pulmonary disease, and atherosclerosis.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: December 31, 2019
    Assignee: Unity Biotechnology, Inc.
    Inventors: Ryan Hudson, Anne-Marie Beausoleil, F. Anthony Romero, Remi-Martin Laberge
  • Patent number: 10478433
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: November 19, 2019
    Assignees: Unity Biotechnology, Inc., Buck Institute for Research on Aging, Mayo Foundation for Medical Education and Research
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Darren J. Baker, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Jan M. A. van Deursen, Alain Philippe Vasserot, Bennett G. Childs
  • Patent number: 10478432
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 19, 2019
    Assignees: Unity Biotechnology, Inc., Buck Institute for Research on Aging, Mayo Foundation for Medical Education and Research
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Darren J. Baker, Bennett G. Childs, Jan M. A. van Deursen