Patents Assigned to Valigen (US), Inc.
  • Patent number: 6870075
    Abstract: The present invention relates to the production of a non-transgenic plant resistant or tolerant to a herbicide of the phosphonomethylglycine family, e.g., glyphosate. The present invention also relates to the use of a recombinagenic oligonucleobase to make a desired mutation in the chromosomal or episomal sequences of a plant in the gene encoding for 5-enol pyruvylshikimate-3-phosphate synthase (EPSPS). The mutated protein, which substantially maintains the catalytic activity of the wild-type protein, allows for increased resistance or tolerance of the plant to a herbicide of the phosphonomethylglycine family, and allows for the substantially normal growth or development of the plant, its organs, tissues or cells as compared to the wild-type plant irrespective of the presence or absence of the herbicide.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: March 22, 2005
    Assignee: Valigen (US), Inc.
    Inventors: Peter R. Beetham, Patricia L. Avissar, Keith A. Walker, Richard A. Metz
  • Publication number: 20040023392
    Abstract: The invention concerns the introduction of predetermined genetic changes in target genes of a living cell by introducing an oligodeoxynucleotide encoding the predetermined change. The oligodeoxynucleotides are effective in animal, plant and bacterial cells. Specific end modifications that greatly increase the effectiveness of the oligodeoxynucleotides in bacteria are described. Surprisingly, unmodified oligodeoxynucleotides can be as effective in mammalian cells, including in vivo hepatocytes, as the modified nucleotides and can be as effective or more effective than chimeric oligonucleotides that consist of a mixture of deoxynucleotides and 2′-O-methyl ribonucleotides.
    Type: Application
    Filed: November 12, 2002
    Publication date: February 5, 2004
    Applicant: ValiGen (US), Inc.
    Inventors: Richard A. Metz, Bruce L. Frank, Debra M. Walther
  • Patent number: 6573046
    Abstract: The invention is based on the reaction of recombinagenic oligonucleotides in a cell-free system containing a cytoplasmic cell extract and a test duplex DNA on a plasmid. The reaction specifically converts a mutant kanr gene to recover the resistant phenotype in transformed MutS, RecA deficient bacteria and allows for the rapid and quantitative comparison of recombinagenic oligonucleobases. Using this system a type of Duplex Mutational Vector termed a Heteroduplex Mutational Vector, was shown to be more active in than the types of mutational vectors heretofore tested. Further improvements in activity were obtained by replacement of a tetrathymidine linker by a nuclease resistant oligonucleotide, such as tetra-2′-O-methyl-uridine, to link the two strands of the Duplex Mutational Vector and removal of the DNA-containing intervening segment. The claims concern Duplex Mutational Vectors that contain the above improvements.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: June 3, 2003
    Assignee: ValiGen (US), Inc
    Inventors: Eric B. Kmiec, Howard B. Gamper, Allyson D. Cole-Strauss
  • Patent number: 6479292
    Abstract: The invention concerns the introduction of predetermined genetic changes in target genes of a living cell by introducing an oligodeoxynucleotide encoding the predetermined change. The oligodeoxynucleotides are effective in animal, plant and bacterial cells. Specific end modifications that greatly increase the effectiveness of the oligodeoxynucleotides in bacteria are described. Surprisingly, unmodified oligodeoxynucleotides can be as effective in mammalian cells, including in vivo hepatocytes, as the modified nucleotides and can be as effective or more effective than chimeric oligonucleotides that consist of a mixture of deoxynucleotides and 2′-O-methyl ribonucleotides.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: November 12, 2002
    Assignee: ValiGen (US), Inc.
    Inventors: Richard A. Metz, Bruce L. Frank, Debra M. Walther
  • Patent number: 6420111
    Abstract: The present invention relates generally to the field of genomics. More particularly, the present invention relates to a method for gene identification beginning with user-selected input phenotypes. The method is referred to generally as the ValiGeneSM Gene Identification method, or the VGIDSM method. When more than two source populations of nucleic acids are simultaneously compared, the method may be referred to as multiplex VGIDSM. The method employs nucleic acid mismatch binding protein chromatography to effect a molecular comparison of one phenotype with others. Genes are identified as having a specified function, or as causing or contributing to the cause or pathogenesis of a specified disease, or as associated with a specific phenotype, by virtue of their selection by the method. Identified genes may be used in development of reagents, drugs and/or combinations thereof useful in clinical or other settings for prognosis, diagnosis and/or treatment of diseases, disorders and/or conditions.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: July 16, 2002
    Assignee: ValiGen (US), Inc.
    Inventors: Francois J.M. Iris, Jean-Louis Pourny
  • Patent number: 6403309
    Abstract: The present invention is directed to methods and compositions for use in screening nucleic acid populations for nucleic acid polymorphisms. The methods, referred to generally as ValiGeneSM Mutation Screening, Peptide-Linked (VGMS-PL) methods, are specifically designed for high-throughput genotype mapping and gene expression analysis of animal and plant nucleic acids without requiring a PCR amplification step. In particular, the methods of the invention utilize oligonucleotide probes labeled with distinguishable and identifiable peptide tags, that are captured on addressable antibody arrays.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: June 11, 2002
    Assignee: ValiGen (US), Inc.
    Inventors: Francois J.-M. Iris, Jean-Louis Pourny
  • Patent number: 6329147
    Abstract: A method for detecting mutations, such as a single base change or an addition or deletion of about one to four base pairs, is based on the use of an immobilized DNA mismatch-binding protein, such as MutS, which binds to a nucleic acid hybrid having a single base mismatch or unpaired base or bases, thereby allowing the detection of mutations involving as little as one base change in a nucleotide sequence. Such a method is useful for diagnosing a variety of important disease states or susceptibilities, including the presence of a mutated oncogene and the presence of DNA containing triplet repeat sequences which characterize several genetic diseases including fragile X syndrome. The present method is used to isolate or remove by affinity chromatography duplex DNA molecules containing mismatches such as error-containing molecules in PCR-amplified DNA samples. Methods for detecting and enriching minority sequences are disclosed.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: December 11, 2001
    Assignee: ValiGen (US), Inc.
    Inventor: Robert E. Wagner, Jr.
  • Patent number: 6271360
    Abstract: The invention concerns the introduction of predetermined genetic changes in target genes of a living cell by introducing an oligodeoxynucleotide encoding the predetermined change. The oligodeoxynucleotides are effective in mammalian, avian, plant and bacterial cells. Specific end modifications that greatly increase the effectiveness of the oligodeoxynucleotides in bacteria are described. Surprisingly, unmodified oligodeoxynucleotides can be as effective in mammaliancells, including in vivo hepatocytes, as the modified nucleotides and can be as effective or more effective than chimeric oligonucleotides that consist of a mixture of deoxynucleotides and 2′-O-methyl ribonucleotides.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: August 7, 2001
    Assignee: ValiGen (US), Inc.
    Inventors: Richard A. Metz, Bruce L. Frank, Debra M. Walther
  • Patent number: 6211351
    Abstract: The invention is based on the discovery that recombinagenic oligonucleobases are active in prokaryotic cells that contain a strand transfer activity (RecA) and mismatch repair activity (MutS). Using this system a type of Duplex Mutational Vector termed a Heteroduplex Mutational Vector, was shown to be more active in prokaryotic cells than the types of mutational vectors heretofore tested. Further improvements in activity were obtained by replacing the tetrathymidine linker by a nuclease resistant oligonucleotide, such as tetra-2′-O-methyl-uridine, to link the two strands of the recombinagenic oligonucleobase and removing the DNA-containing intervening segment. The claims concern Duplex Mutational Vectors that contain the above improvements. In an alternative embodiment the claims concern the use of Duplex Mutational Vectors in prokaryotic cells.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: April 3, 2001
    Assignee: ValiGen (US), Inc.
    Inventors: Ramesh Kumar, Richard A. Metz
  • Patent number: 6210916
    Abstract: The invention includes a method of phosphorylating a serine containing substrate by incubating the substrate with ATP and an enzyme that is hsRec2 or muRec2 or a derivative thereof. The natural substrates of the kinase activity of Rec2 are the cell cycle control proteins such as p53 and cyclin E. The over expression of Rec2 is known to cause cell-cycle arrest and apoptosis and the invention discloses that these effects are kinase mediated. Accordingly, the invention provides a method of assessing antagonists and agonists of Rec2, which antagonists and agonists would have pharmacological activity. The invention further discloses that there is specific binding between hsRec2 and at least three cell cycle control proteins: p53, PCNA and cdc2.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: April 3, 2001
    Assignees: Thomas Jefferson University, Cornell Research Foundation Inc., Valigen (US), Inc.
    Inventors: Pamela A. Havre, Michael C. Rice, William K. Holloman, Eric B. Kmiec
  • Patent number: 6174694
    Abstract: The invention includes a method of phosphorylating a serine containing substrate by incubating the substrate with ATP and an enzyme that is hsRec2 or muRec2 or a derivative thereof. The natural substrates of the kinase activity of Rec2 are the cell cycle control proteins such as p53 and cyclin E. The over expression of Rec2 is known to cause cell-cycle arrest and apoptosis and the invention discloses that these effects are kinase mediated. Accordingly, the invention provides a method of assessing antagonists and agonists of Rec2, which antagonists and agonists would have pharmacological activity. The invention further discloses that there is specific binding between hsRec2 and at least three cell cycle control proteins: p53, PCNA and cdc2.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: January 16, 2001
    Assignees: Thomas Jefferson University, Cornell Research Foundation, Inc., Valigen (US), Inc.
    Inventors: Pamela A. Havre, Michael C. Rice, William K. Holloman, Eric B. Kmiec