Patents Assigned to Vishay Vitramon Incorporated
  • Patent number: 7208218
    Abstract: A method of providing a resistance to oxidation of Nickel at high temperatures by combining Ni powder with five percent Pt resinate, and heating the same to a temperature of 500° C. to 1300° C. Electro-conductive components serving as electrodes and the like comprise a Ni/Pt powder subjected to temperatures of between 500° C. and the respective melting points of Ni and Pt.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: April 24, 2007
    Assignee: Vishay Vitramon Incorporated
    Inventor: Vito A. Coppola
  • Publication number: 20060039821
    Abstract: A method of providing a resistance to oxidation of Nickel at high temperatures by combining Ni powder with five percent Pt resinate, and heating the same to a temperature of 500° C. to 1300° C. Electro-conductive components serving as electrodes and the like comprise a Ni/Pt powder subjected to temperatures of between 500° C. and the respective melting points of Ni and Pt.
    Type: Application
    Filed: September 6, 2005
    Publication date: February 23, 2006
    Applicant: VISHAY VITRAMON INCORPORATED
    Inventor: Vito Coppola
  • Patent number: 6723280
    Abstract: A method of providing a resistance to oxidation of Nickel at high temperatures by combining Ni powder with five percent Pt resinate, and heating the same to a temperature of 500° C. to 1300° C. Electro-conductive components serving as electrodes and the like comprise a Ni/Pt powder subjected to temperatures of between 500° C. and the respective melting points of Ni and Pt.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: April 20, 2004
    Assignee: Vishay Vitramon Incorporated
    Inventor: Vito A. Coppola
  • Patent number: 6207234
    Abstract: A method of creating a multilayer ceramic component of the present invention is used to spontaneously create vias between adjacent conductor layers in a multilayer inductive component. After a first conductive layer is printed, a via dot is printed on the first conductive layer. Next, a controlled thickness of ceramic slurry is cast over the previous ceramic layer, first conductive pattern, and the via dot. The physical/chemical forces between the via dot and the ceramic slurry expel the slurry in the proximity of the top surface of the via dot. When the ceramic slurry dries, the ceramic cast leaves vias filled with conductors from the preprinted via dots. This process is repeated until a desired number of conductive layers are formed.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: March 27, 2001
    Assignee: Vishay Vitramon Incorporated
    Inventor: John J. Jiang