Patents Assigned to VulcanForms Inc.
  • Publication number: 20220072769
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be used to deposit a material layer onto a build surface of an additive manufacturing system. In some instances, the recoater assembly may include a powder entrainment system that trails behind a recoater blade of the recoater assembly relative to a direction of motion of the recoater blade across a build surface of the additive manufacturing system. The powder entrainment system may generate a flow of fluid across a portion of the build surface behind the recoater blade that at least temporarily entrains powder above a threshold height from the build surface to mitigate, or prevent, the formation of defects on the build surface with heights greater than the threshold height.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 10, 2022
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11247396
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: February 15, 2022
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20220009030
    Abstract: Optics assemblies and their methods of use in additive manufacturing systems are described. In some embodiments, an additive manufacturing system may include a build surface, a plurality of laser energy sources configured to produce a plurality of laser spots on the build surface, and an optics assembly configured to independently control a size of each of the plurality of laser spots and a spacing between the plurality of laser spots on the build surface. The optics assembly may include a plurality of lens arrays, where the plurality of lens arrays is configured to adjust a size of each of the plurality of laser spots on the build surface, and at least one lens. The at least one lens may also be configured to adjust a spacing between the plurality of laser spots on the build surface.
    Type: Application
    Filed: June 24, 2021
    Publication date: January 13, 2022
    Applicant: VulcanForms Inc.
    Inventors: Michael von Dadelszen, Raghav Aggarwal, Hongqing Sun
  • Publication number: 20210402480
    Abstract: Build plate assemblies and their methods of use for an additive manufacturing system are disclosed. In some embodiments, a build plate assembly may include a build plate with a build surface and one or more recesses formed in the build plate. One or more inserts may be inserted into the corresponding one or more recesses of the build plate such that a portion of the one or more inserts are accessible through one or more corresponding openings formed in the build surface associated with the recesses.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 30, 2021
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20210387263
    Abstract: Systems and methods for additive manufacturing are described. In some embodiments, a method of controlling the one or more laser energy sources of an additive manufacturing system may be based at least in part on a scan angle and/or desired energy density. Systems and methods for controlling melt pool spacing are also described.
    Type: Application
    Filed: June 2, 2021
    Publication date: December 16, 2021
    Applicant: VulcanForms Inc.
    Inventors: Jan Pawel Komsta, Alexander Dunbar, Raghav Aggarwal, Matthew Sweetland, Martin C. Feldmann
  • Publication number: 20210339318
    Abstract: Systems and methods for additive manufacturing are described. In some embodiments, a method of controlling a weld height in an additive manufacturing process includes determining a desired melt pool width based, at least in part, on a desired weld height; selectively activating one or more laser energy sources based, at least in part, on the desired melt pool width; and melting a portion of a layer of material on a build surface via exposure to laser energy from the one or more activated laser energy sources to form a melt pool on the build surface having the desired melt pool width. Systems and methods to the use of staggered laser energy sources are also described.
    Type: Application
    Filed: March 3, 2021
    Publication date: November 4, 2021
    Applicant: VulcanForms Inc.
    Inventors: Alexander Dunbar, Raghav Aggarwal
  • Publication number: 20210252640
    Abstract: Methods and systems for additive manufacturing are described. In one embodiment, laser energy is emitted from one or more laser energy sources, and a phase of the laser energy emitted by each of the laser energy sources is controlled to at least partially control a position of one or more laser beams directed towards a build surface. In some embodiments an optical phased array (OPA) is used to at least partially control the position and/or shape of the one or more laser beams on the build surface. Additionally, in some embodiments one or more mirror galvanometers and/or a moveable portion of a system may be used in coordination with one or more OPA assemblies.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 19, 2021
    Applicant: VulcanForms Inc.
    Inventor: Martin C. Feldmann
  • Publication number: 20210170490
    Abstract: Methods and apparatuses for additive manufacturing are described. A method for additive manufacturing may include exposing a layer of material on a build surface to one or more projections of laser energy including at least one line laser having a substantially linear shape. The intensity of the line laser may be modulated so as to cause fusion of the layer of material according to a desired pattern as the one or more projections of laser energy are scanned across the build surface.
    Type: Application
    Filed: January 25, 2021
    Publication date: June 10, 2021
    Applicant: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Anastasios John Hart, Knute Svenson, Andrey Vyatskikh
  • Publication number: 20210107062
    Abstract: Aspects described herein relate to additive manufacturing systems and related methods. An additive manufacturing system may include two or more laser energy sources and associated optical fibers. An optics assembly may be constructed and arranged to form a rectangular laser energy pixel associated with each laser energy source. Each pixel may have a substantially uniform power density, and the pixels may be arranged to form a linear array of laser energy pixels on a build surface with no spacing between the pixels. Exposure of a portion of a layer of material on the build surface to the linear array of laser energy pixels may melt the portion of the layer.
    Type: Application
    Filed: December 3, 2020
    Publication date: April 15, 2021
    Applicant: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Jan Pawel Komsta, Matthew Sweetland
  • Publication number: 20210060857
    Abstract: Aspects described herein relate to additive manufacturing systems and related methods. In some embodiments, an additive manufacturing system includes a laser array position detector to determine a position and/or orientation of laser energy pixels in a laser array. The laser array position detector may include an aperture and an optical sensor positioned within the aperture to detect laser energy from a laser energy pixel when the laser array is scanned across the aperture.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 4, 2021
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 10919090
    Abstract: Methods and apparatuses for additive manufacturing are described. A method for additive manufacturing may include exposing a layer of material on a build surface to one or more projections of laser energy including at least one line laser having a substantially linear shape. The intensity of the line laser may be modulated so as to cause fusion of the layer of material according to a desired pattern as the one or more projections of laser energy are scanned across the build surface.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 16, 2021
    Assignee: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Anastasios John Hart, Knute Svenson, Andrey Vyatskikh
  • Patent number: 10875094
    Abstract: Aspects described herein relate to additive manufacturing systems and related methods. An additive manufacturing system may include two or more laser energy sources and associated optical fibers. An optics assembly may be constructed and arranged to form a rectangular laser energy pixel associated with each laser energy source. Each pixel may have a substantially uniform power density, and the pixels may be arranged to form a linear array of laser energy pixels on a build surface with no spacing between the pixels. Exposure of a portion of a layer of material on the build surface to the linear array of laser energy pixels may melt the portion of the layer.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: December 29, 2020
    Assignee: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Jan Pawel Komsta, Matthew Sweetland
  • Publication number: 20200376762
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20200376773
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20200376600
    Abstract: Disclosed embodiments relate to additive manufacturing systems. In some embodiments, an additive manufacturing system may include a plurality of laser energy sources, an optics assembly configured to direct laser energy onto a build surface, and an optical fiber connector positioned between the plurality of laser energy sources and the optics assembly. A first plurality of optical fibers may extend between the plurality of laser energy sources and the optical fiber connector, and a second plurality of optical fibers may extend between the optical fiber connector and the optics assembly. Each optical fiber of the first plurality of optical fibers may be coupled to a corresponding optical fiber of the second plurality of optical fibers within the optical fiber connector.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Applicant: VulcanForms Inc.
    Inventors: Raghav Aggarwal, Martin C. Feldmann
  • Publication number: 20200376761
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be adjustable along multiple degrees of freedom relative to a build surface, which may allow for adjustment of a spacing between the recoater assembly and the build surface and/or an orientation of the recoater assembly relative to an orientation of the build surface. In some embodiments, the recoater assembly may be supported by four support columns extending above the build surface, and attachments between the recoater assembly and the support columns may be independently adjustable to adjust the recoater relative to the build surface.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20200230745
    Abstract: Laser control systems and related methods for controlling arrays of lasers are disclosed. A laser control system may include a first controller configured to generate a trigger signal based on a position of a laser array, and a second controller configured to send a firing signal to one or more lasers of the laser array upon receiving the trigger signal. The one or more lasers may be selected based on a desired pattern of laser energy to be formed at a particular position of the laser array.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 23, 2020
    Applicant: VulcanForms Inc.
    Inventors: Jan Pawel Komsta, Alexander Dunbar, Matthew Sweetland
  • Publication number: 20200108465
    Abstract: Disclosed embodiments relate to additive manufacturing systems. In some embodiments, an additive manufacturing system includes a fixed build plate, and a build volume extends above the fixed build plate. A boundary of the build volume may be defined by a powder containing shroud that is vertically displaceable relative to the fixed build plate. A powder deposition system is configured to deposit a powder layer along an upper surface of the build volume and the powder deposition is vertically displaceable relative to the fixed build plate. An optics assembly configured to direct laser energy from one or more laser energy sources towards the build volume, and exposure of the powder layer to the laser energy melts at least a portion of the powder layer. In some embodiments, the build plate may be supported by support columns configured to maintain the build plate in a level orientation throughout a build process.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 9, 2020
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20200039000
    Abstract: An additive manufacturing system may include a build surface, one or more laser energy sources, and an optics assembly. Exposure of a layer of material on the build surface to laser energy from the optics assembly melts at least a portion of the layer of material. A gas flow head is coupled to the optics assembly and defines a partially enclosed volume between the optics assembly and the build surface. The gas flow head includes a gas inflow through which a supply gas flows into the gas flow head, a gas outflow through which a return gas flows out of the gas flow head, and an aperture arranged to permit transmission of the laser energy through the gas flow head to the build surface. The supply gas and return gas define a gas flow profile within the gas flow head.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 6, 2020
    Applicant: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Publication number: 20190299286
    Abstract: Aspects described herein relate to additive manufacturing systems and related methods. An additive manufacturing system may include two or more laser energy sources and associated optical fibers. An optics assembly may be constructed and arranged to form a rectangular laser energy pixel associated with each laser energy source. Each pixel may have a substantially uniform power density, and the pixels may be arranged to form a linear array of laser energy pixels on a build surface with no spacing between the pixels. Exposure of a portion of a layer of material on the build surface to the linear array of laser energy pixels may melt the portion of the layer.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Applicant: VulcanForms Inc.
    Inventors: Martin C. Feldmann, Jan Pawel Komsta, Matthew Sweetland