Patents Assigned to Wilson Greatbatch Technologies, Inc.
  • Patent number: 6740420
    Abstract: A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu and then directing a high energy beam onto the substrate to cause an intermixing of the deposited material with the native oxide of the substrate metal or metal alloy. The native oxide layer is changed from electrically insulating to electrically conductive. The step of depositing can be carried out, for example, by ion beam assisted deposition, electron beam deposition, chemical vapor deposition, physical vapor deposition, plasma assisted, low pressure plasma and plasma spray deposition and the like.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 25, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Barry Muffoletto, Ashish Shah, Donald H. Stephenson
  • Patent number: 6687117
    Abstract: The present invention is directed to an electrolyte for an electrolytic capacitor. The capacitor has an electrolytic anode and an electrochemical cathode. The electrolyte has water, a water soluble organic salt, and a relatively weak organic acid. This electrolyte is chemically compatible to aluminum and tantalum oxide dielectrics and withstands higher voltage while maintaining good conductivity. This makes the electrolyte especially useful for high voltage applications, such as occur in an implantable cardiac defibrillator.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: February 3, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Yanming Liu, Ashish Shah
  • Patent number: 6636020
    Abstract: The present invention is directed to an overvoltage disconnect circuit for a lithium ion battery and/or cell. The lithium ion battery has at least one lithium ion battery cell having a rated voltage or a desired voltage, an input terminal, and being chargeable by a charger. The overvoltage disconnect circuit has (1) a switch unit, and (2 & 3) a first and second voltage dividers connected to (4) a comparator. The switch unit is in series with the lithium ion cell and the charger and the gate of the switch unit is connected to the comparator. The first voltage divider receives the voltage of the charger and generates a second charge. The second charge is proportionally below the voltage of the charger. The second voltage divider receives the voltage of the charger and generates a predetermined charge; the predetermined charge is proportionally below and sometimes less than the rated voltage or the desired voltage of the cell. The comparator compares the predetermined charge to the second charge.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: October 21, 2003
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventor: Timothy R. Ronald
  • Patent number: 6541140
    Abstract: A secondary electrochemical cell comprising a medium rate electrode region intended to be discharged under a substantially constant drain and a high rate electrode region intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electrolyte.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: April 1, 2003
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: David M. Spillman, Esther S. Takeuchi