Patents Assigned to X-CELEPRINT LIMITED
  • Patent number: 10451257
    Abstract: A backlight system includes a backplane and a plurality of bare die light emitters disposed on the backplane. Each light emitter has a light-emitter substrate and contact pads on the light-emitter substrate through which electrical current is supplied to cause the light emitter to emit light. A plurality of first and second backplane conductors are disposed on the backplane for conducting control signals to control the light emitters through the contact pads. A plurality of light valves is disposed to receive light from the light emitters. The number of light valves is greater than the number of light emitters.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: October 22, 2019
    Assignee: X-Celeprint Limited
    Inventor: Ronald S. Cok
  • Patent number: 10453826
    Abstract: A multi-color inorganic light-emitting diode (iLED) display includes a display substrate with a common voltage signal and a common ground signal and a plurality of multi-color pixels. In certain embodiments, each multi-color pixel includes a first color sub-pixel including two or more first iLEDs, a second color sub-pixel including one or more second iLEDs, and a third color sub-pixel including one or more third iLEDs. The two or more first iLEDs are serially connected between the common voltage signal and the common ground signal, the one or more second iLEDs are serially connected between the common voltage signal and the common ground signal, and the one or more third iLEDs are serially connected between the common voltage signal and the common ground signal.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 22, 2019
    Assignee: X-Celeprint Limited
    Inventors: Brook Raymond, Ronald S. Cok, Matthew Meitl
  • Patent number: 10446719
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: October 15, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte
  • Patent number: 10438859
    Abstract: A repaired transfer printed system (e.g., micro-transfer printed system) includes a system substrate having two or more contact pads disposed on the system substrate. One or more transfer printed devices (e.g., micro-transfer printed devices) are disposed in contact with the system substrate, each device having two or more connection posts. Each connection post of a replacement device is in physical contact with a contact pad, the connection post forming a second imprint in the physically contacted contact pad. In certain embodiments, a first imprint is in at least one of the physically contacted contact pads and is between the replacement device and the system substrate.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 8, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Erich Radauscher, David Gomez
  • Patent number: 10431719
    Abstract: A color-conversion structure includes an article comprising a color-conversion material disposed within a color-conversion layer. At least a portion of a tether is within or extends from the article. The color-conversion structure can be disposed over a sacrificial portion of a substrate to form a micro-transfer printable device and micro-transfer printed to a display substrate. The color-conversion structure can include an light-emitting diode or laser diode that is over or under the article. Alternatively, the article is located on a side of a display substrate opposite an inorganic light-emitting diode. A display includes an array of color-conversion structures disposed on a display substrate.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: October 1, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl
  • Patent number: 10431487
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 1, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10424572
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: September 24, 2019
    Assignees: The Board of Trustees of the University of Illinois, X-Celeprint Limited
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Patent number: 10418331
    Abstract: An electronic component array includes a backplane substrate, and a plurality of integrated circuit elements on the backplane substrate. Each of the integrated circuit elements includes a chiplet substrate having a connection pad and a conductor element on a surface thereof. The connection pad and the conductor element are electrically separated by an insulating layer that exposes at least a portion of the connection pad. At least one of the integrated circuit elements is misaligned on the backplane substrate relative to a desired position thereon. A plurality of conductive wires are provided on the backplane substrate including the integrated circuit elements thereon, and the connection pad of each of the integrated circuit elements is electrically connected to a respective one of the conductive wires notwithstanding the misalignment of the at least one of the integrated circuit elements. Related fabrication methods are also discussed.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 17, 2019
    Assignee: X-Celeprint Limited
    Inventor: Christopher Bower
  • Patent number: 10418501
    Abstract: A concentrator-type photovoltaic module includes a plurality of photovoltaic cells having respective surface areas of less than about 4 square millimeters (mm) electrically interconnected in series and/or parallel on a backplane surface, and an array of concentrating optical elements having respective aperture dimensions of less than about 30 mm and respective focal lengths of less than about 50 mm. The array of concentrating optical elements is positioned over the photovoltaic cells based on the respective focal lengths to concentrate incident light on the photovoltaic cells, and is integrated on the backplane surface by at least one spacer structure on the backplane surface. Related devices, operations, and fabrication methods are also discussed.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 17, 2019
    Assignee: X-Celeprint Limited
    Inventors: Brent Fisher, Matthew Meitl, Scott Burroughs, Miroslav Samarskiy
  • Patent number: 10416425
    Abstract: CPV modules include a back plate having an array of 1 mm2 or smaller solar cells thereon. A backplane interconnect network is also provided on the back plate. This backplane interconnect network operates to electrically connect the array of solar cells together. A front plate, which is spaced-apart from the back plate, is provided. This front plate includes an array of primary lenses thereon that face the array of solar cells. The front plate can be configured to provide a greater than 1000× lens-to-cell light concentration to the array of solar cells. To achieve this 1000× lens-to-cell light concentration, the primary lenses can be configured as plano-convex lenses having a lens sag of less than about 4 mm. An array of secondary optical elements may also be provided, which extend between the array of primary lenses and the array of solar cells.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: September 17, 2019
    Assignee: X-Celeprint Limited
    Inventors: Etienne Menard, Christopher Bower, Scott Burroughs, Joe Carr, Bob Conner, Sergiy Dets, Bruce Furman, Matthew Meitl, Michael Sullivan
  • Patent number: 10395966
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10396238
    Abstract: The present invention provides structures and methods that enable the construction of micro-LED chiplets formed on a sapphire substrate that can be micro-transfer printed. Such printed structures enable low-cost, high-performance arrays of electrically connected micro-LEDs useful, for example, in display systems. Furthermore, in an embodiment, the electrical contacts for printed LEDs are electrically interconnected in a single set of process steps. In certain embodiments, formation of the printable micro devices begins while the semiconductor structure remains on a substrate. After partially forming the printable micro devices, a handle substrate is attached to the system opposite the substrate such that the system is secured to the handle substrate. The substrate may then be removed and formation of the semiconductor structures is completed. Upon completion, the printable micro devices may be micro transfer printed to a destination substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Carl Prevatte, Salvatore Bonafede
  • Patent number: 10395582
    Abstract: A parallel redundant integrated-circuit system includes an input connection, an output connection and first and second active circuits. The first active circuit includes one or more first integrated circuits and has an input connected to the input connection and an output connected to the output connection. The second active circuit includes one or more second integrated circuits and is redundant to the first active circuit, has an input connected to the input connection, and has an output connected to the output connection. The second integrated circuits are separate and distinct from the first integrated circuits.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Bower, Matthew Meitl
  • Patent number: 10396137
    Abstract: A method of making and testing transfer-printable micro-devices on a source wafer includes providing a source wafer comprising a plurality of sacrificial portions spatially separated by anchors, the source wafer comprising one or more test contact pads, providing a micro-device entirely over each of the plurality of sacrificial portions, each micro-device physically connected to at least one anchor with one or more tethers, providing one or more electrical test connections from each micro-device to a corresponding test contact pad, testing the micro-devices through the test connections to determine functional micro-devices and faulty micro-devices, and removing at least a portion of the one or more test connections.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Andrew Bower
  • Patent number: 10388205
    Abstract: A digital-drive display system, comprising an array of display pixels, each display pixel having a light emitter, a digital memory for storing a digital pixel value, and a drive circuit that drives the light emitter in response to the digital pixel value. The drive circuit can respond to a control signal provided to all of the display pixels in common by a display controller that loads digital pixel values in the digit memory of each display pixel.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 20, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Andrew Bower
  • Patent number: 10380930
    Abstract: A heterogeneous light-emitter display includes a display substrate having a plurality of pixels disposed thereon. Each pixel including at least a first heterogeneous multiple-component sub-pixel emitting a first color of light and a second sub-pixel emitting a second color of light different from the first color. A heterogeneous light-emitter display can also include an array of heterogeneous pixels. Each heterogeneous pixel includes a plurality of first pixels and a plurality of second pixels. The first sub-pixel of each of the first pixels includes a first light emitter and the first sub-pixel of each of the second pixels includes a second light emitter different from the first light emitter. One or more pixel controllers control the pixels, the first and second pixels, the first and second sub-pixels, and the first and second light emitters.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: August 13, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl
  • Patent number: 10381430
    Abstract: A structure with an interconnection layer for redistribution of electrical connections includes a plurality of first electrical connections disposed on a substrate in a first arrangement. An insulating layer is disposed on the substrate over the first electrical connections. A plurality of second electrical connections is disposed on the insulating layer on a side of the insulating layer opposite the plurality of first electrical connections in a second arrangement. Each second electrical connection is electrically connected to a respective first electrical connection. An integrated circuit is disposed on the substrate and is electrically connected to the first electrical connections. The first electrical connections in the first arrangement have a greater spatial density than the second electrical connections in the second arrangement.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 13, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10361677
    Abstract: A micro-transfer printable transverse bulk acoustic wave filter comprises a piezoelectric filter element having a top side, a bottom side, a left side, and a right side disposed over a sacrificial portion on a source substrate. A top electrode is in contact with the top side and a bottom electrode is in contact with the bottom side. A left acoustic mirror is in contact with the left side and a right acoustic mirror is in contact with the right side. The thickness of the transverse bulk acoustic wave filter is substantially less than its length or width and its length can be greater than its width. The transverse bulk acoustic wave filter can be disposed on, and electrically connected to, a semiconductor substrate comprising an electronic circuit to control the transverse bulk acoustic wave filter and form a composite heterogeneous device that can be micro-transfer printed.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 23, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok, Robert R. Rotzoll
  • Patent number: 10361180
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 23, 2019
    Assignees: The Board of Trustees of the University of Illinois, X-Celeprint Limited
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Patent number: 10360846
    Abstract: A distributed pulse-width modulation system includes an array of pulse-width modulation elements, each element including a digital memory for storing a plurality of multi-bit digital values, a drive circuit for each stored multi-bit digital value, and an output device for each stored multi-bit digital value. The multi-bit digital values all have the same number of bits. For each stored multi-bit digital value, the corresponding drive circuit drives the corresponding output device in response to the multi-bit digital value stored in the digital memory. A system controller includes a memory for storing the multi-bit digital values for each pulse-width modulation element and a communication circuit communicates each multi-bit digital value to each corresponding pulse-width modulation element.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: July 23, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll