Patents Assigned to Xerox Corporation
  • Patent number: 11806927
    Abstract: A method of providing high-speed three dimensional (3D) printing is described. The method includes producing at least one three dimensional (3D) printed part. Producing the 3D part includes continuously constructing to extend outwardly a diameter of a rotating cylindrical core via continuous deposition of a layer, and defining a first pattern in the continuously deposited layer corresponding to a cross-section of the at least one 3D printed part.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: November 7, 2023
    Assignee: Xerox Corporation
    Inventors: Ashish V. Pattekar, Warren Jackson, Anne Plochowietz, Jengping Lu, Jamie Kalb, Christopher L. Chua, Carolyn Moorlag, Eugene Beh
  • Patent number: 11810396
    Abstract: A method of image annotation includes selecting a plurality of annotation models related to an annotation task for an image, obtaining a candidate annotation map for the image from each of the plurality of annotation models, and selecting at least one of the candidate annotation maps to be displayed via a user interface, the candidate annotation maps comprising suggested annotations for the image. The method further includes receiving user selections or modifications of at least one of the suggested annotations from the candidate annotation map and generating a final annotation map based on the user selections or modifications.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 7, 2023
    Assignee: Xerox Corporation
    Inventors: Matthew Shreve, Raja Bala, Jeyasri Subramanian
  • Patent number: 11806783
    Abstract: A method of printing a three-dimensional object. The method comprises supplying a print material that is electrically conductive to a plurality of ejector conduits arranged in an array, the ejector conduits comprising first ends configured to accept the print material and second ends comprising ejector nozzles; advancing the print material in one or more of the ejector conduits of the array until the print material is disposed in the ejector nozzle of the one or more ejector conduits; flowing electrical current through the print material positioned in at least one of the ejector nozzles, thereby heating and expanding the print material in the at least one of the ejector nozzles so as to eject at least a portion of the print material from the at least one of the ejector nozzles onto a print substrate; and repeating both the advancing and the flowing electrical current through the print material to form a three-dimensional object on the print substrate.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: November 7, 2023
    Assignee: XEROX CORPORATION
    Inventors: David K. Biegelsen, Robert Anthony Street
  • Patent number: 11806926
    Abstract: A printing system for producing at least one three dimensional (3D) printed part is described. The printing system includes a deposition system configured to continuously deposit a layer onto a cylinder to outwardly extend a diameter of the cylinder, wherein the layer comprises a first pattern. The printing system also includes a rotating system configured to rotate the cylinder, and a control system configured to synchronize the deposition system with the cylinder.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: November 7, 2023
    Assignee: Xerox Corporation
    Inventors: Ashish V. Pattekar, Warren Jackson, Anne Plochowietz, Jengping Lu, Jamie Kalb, Christopher L. Chua, Carolyn Moorlag, Eugene Beh
  • Patent number: 11809932
    Abstract: Access is provided to a variable data printing app and a code detection app on a computer server. The variable data printing app is adapted to add machine-readable code to printable items and create a decoder app capable of decoding the machine-readable code. The code detection app is adapted to receive user identification information and transmit the user identification information to designer devices. The printable items are printed as printed products. The designer devices validate a user device based on the validity of the user identification information. In response, the variable data printing app is adapted to transmit the decoder app to validated user devices. The code detection app, operating on the user device, is adapted to decode the machine-readable code in user-acquired images into an optional secure link with the designer devices.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: November 7, 2023
    Assignee: Xerox Corporation
    Inventors: Patricia J. Donaldson, Stuart Schweid, Michael B. Monahan, Roger L. Triplett, Douglas R. Taylor
  • Patent number: 11808680
    Abstract: A method includes illuminating a drop with a pulse of light from a light source. A duration of the pulse of light is from about 0.0001 seconds to about 0.1 seconds. The method also includes capturing an image, video, or both of the drop. The method also includes detecting the drop in the image, the video, or both. The method also includes characterizing the drop after the drop is detected. Characterizing the drop includes determining a size of the drop, a location of the drop, or both in the image, the video, or both.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: November 7, 2023
    Assignee: XEROX CORPORATION
    Inventors: Vijay Kumar Baikampady Gopalkrishna, Raja Bala, Palghat Ramesh, David Allen Mantell, Peter Michael Gulvin, Mark A. Cellura
  • Publication number: 20230351103
    Abstract: The disclosure discloses methods and systems for automatically validating content of filled-out application forms against one or more corresponding verification documents. The filled-out application form including pre-defined fields and filled-out content, is received at an automatic feeder. Then, one or more corresponding verification documents are received at pre-defined markings on a platen. The verification documents include pre-defined fields and pre-verified content. Thereafter, the filled-out application form and the verification documents are scanned. The scanned filled-out application form and the scanned verification documents are analyzed to extract the filled-out content from the scanned filled-out application form and the pre-verified content from the scanned verification documents. Post extraction, the filled-out content is matched with the pre-verified content and accordingly errors are highlighted in the scanned filled-out application form.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 2, 2023
    Applicant: XEROX CORPORATION
    Inventors: Ashok Jason Vedaraj, Ganachari Subrahmanyam, Zakirahmed Shaik, Sandhya Srinivasan
  • Publication number: 20230348691
    Abstract: Methods for producing highly spherical particles that comprise: mixing a mixture comprising: (a) nanoclay-filled-polymer composite comprising a nanoclay dispersed in a thermoplastic polymer, (b) a carrier fluid that is immiscible with the thermoplastic polymer of the nanoclay-filled-polymer composite, optionally (c) a thermoplastic polymer not filled with a nanoclay, and optionally (d) an emulsion stabilizer at a temperature at or greater than a melting point or softening temperature of the thermoplastic polymer of the nanoclay-filled-polymer and the thermoplastic polymer, when included, to disperse the nanoclay-filled-polymer composite in the carrier fluid; cooling the mixture to below the melting point or softening temperature to form nanoclay-filled-polymer particles; and separating the nanoclay-filled-polymer particles from the carrier fluid.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 2, 2023
    Applicant: XEROX CORPORATION
    Inventors: Robert CLARIDGE, Valerie M. FARRUGIA
  • Patent number: 11801693
    Abstract: A printing system comprises an ink deposition assembly, a media transport device, and an airflow control system. The ink deposition assembly comprises a printhead to eject ink through a carrier plate opening in a carrier plate. The media transport device holds a print medium against a movable support surface by vacuum suction and transports the print media through a deposition region. The airflow control system comprises a baffle that is movable between an upstream-blocking configuration and a downstream-blocking configuration, and an actuator configured to move the baffle. In the upstream-blocking configuration the baffle blocks airflow through an upstream side of the printhead opening while allowing airflow through a downstream side of the printhead opening. In the downstream-blocking configuration the baffle blocks airflow through the downstream side of the printhead opening while allowing airflow through the upstream side of the printhead opening.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: October 31, 2023
    Assignee: XEROX CORPORATION
    Inventors: Peter John Knausdorf, Anthony Salvatore Condello, Jack T. Lestrange, Palghat S. Ramesh, Joseph C. Sheflin
  • Patent number: 11801617
    Abstract: Optical absorber-containing thermoplastic polymer particles (OACTP particles) may be produced by methods that comprise: mixing a mixture comprising a thermoplastic polymer, a carrier fluid that is immiscible with the thermoplastic polymer, and optionally an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the thermoplastic polymer and at a shear rate sufficiently high to disperse the thermoplastic polymer in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the thermoplastic polymer to form solidified particles comprising the thermoplastic polymer; separating the solidified particles from the carrier fluid; and exposing the solidified particles to an optical absorber to produce the OACTP particles.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: October 31, 2023
    Assignee: Xerox Corporation
    Inventors: Valerie M. Farrugia, Mihaela Maria Birau
  • Patent number: 11803645
    Abstract: Embodiments provide a system and method for modeling a shared resource in a multi-layer reasoning graph based on configuration security. During operation, the system can obtain a multi-layer graph for a system with a plurality of components that can include a set of subgroups of components. The system can generate, based on the multi-layer graph, an abstract component to represent a shared resource model for a respective subgroup of components. The shared resource model can be associated with a set of resource constraints. The system can generate a set of values for resource configuration parameters that satisfy the resource constraints. The system can map the shared resource model to a respective component and can then determine, based on the mapping and the set of values for the resource configuration parameters, a set of values for the component configuration parameters thereby facilitating optimization of a security objective function.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 31, 2023
    Assignee: Xerox Corporation
    Inventor: Marc E. Mosko
  • Patent number: 11801674
    Abstract: An optical gloss meter above an imaging member surface measures fountain solution surface gloss on the imaging member surface in real-time during a printing operation. The measured gloss corresponds to a thickness of the fountain solution layer and may be used in a feedback loop to actively control fountain solution layer thickness by adjusting the volumetric feed rate of fountain solution added onto the imaging member surface during a printing operation to reach a desired uniform thickness for the printing. This fountain solution monitoring system may be fully automated.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: October 31, 2023
    Assignee: Xerox Corporation
    Inventors: Anthony S. Condello, Jack T. Lestrange, Joseph C. Sheflin, Brian M. Balthasar, Palghat S. Ramesh
  • Patent number: 11801680
    Abstract: A method of operating a printer iteratively performs printhead purges and test pattern analysis until either every printhead has a number of inoperative inkjets that is less than a predetermined threshold or a maximum number of iterations is reached. An error message is generated for each printhead having a number of inoperative inkjets that is greater than the predetermined threshold. The iterative performance of the printhead purges and test pattern analysis is performed automatically prior to the commencement of printing operations with the printer to remove subjective and time-consuming analysis by a printer operator.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: October 31, 2023
    Assignee: Xerox Corporation
    Inventors: Elizabeth L. Barrese, Dara N. Lubin, Ron E. Dufort, Matthew J. Ochs
  • Patent number: 11802901
    Abstract: A partial discharge (PD) transducer that includes a PD sensor configured to sense a PD event of an electrical system. At least one light emitting device (LED) is arranged in series with the PD sensor. The LED is configured to receive the electrical sensor signal from the PD sensor and to generate a light signal in response to the electrical sensor signal.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 31, 2023
    Assignee: XEROX CORPORATION
    Inventors: Todd Karin, Peter Kiesel, Ajay Raghavan
  • Publication number: 20230340264
    Abstract: Polymer coated particulates may be produced by melt emulsification methods, for example, by mixing a mixture comprising: a carrier fluid, particulates, a thermoplastic polymer, and optionally an emulsion stabilizer at a temperature at or greater than a melting point or softening temperature of the thermoplastic polymer, wherein a mass ratio of the particulates to the thermoplastic polymer is about 1:0.1 to about 1:5; cooling the mixture to below the melting point or softening temperature to form polymer coated particulates; and separating the polymer coated particulates from the carrier fluid.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 26, 2023
    Applicant: Xerox Corporation
    Inventors: Valerie M. FARRUGIA, Michael S. HAWKINS, David LAWTON
  • Patent number: 11794251
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus is equipped with a removable vessel to reduce the time required for start-up procedures after the printer is serviced. The removable vessel is filled with solid metal that is heated to its melting temperature before the bulk wire is inserted into the vessel to commence printing operations. The melting of the solid metal in the removable vessel requires less time that the melting of an length of bulk wire adequate to produce a volume of melted metal suitable for printer operation. The solid metal in the removable vessel can be metal pellets, metal powder, or a solid metal insert.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: October 24, 2023
    Assignee: Xerox Corporation
    Inventors: Jason M. LeFevre, Joseph C. Sheflin, Paul J. McConville, Joshua Hilton
  • Patent number: 11800039
    Abstract: The disclosure discloses methods and systems for securing documents submitted for scanning at a device such as a multi-function device. The method includes scanning a document received from a user. A user interface is provided to the user to define a document type and to further define an access level for accessing the scanned document. Then, scanned data is generated. The scanned data is encoded based on a unique identity of the device and based on the access level such that the scanned data is accessible by the user and/or by one or more other users according to the defined access level. Finally, the scanned document is generated. Later when the scanned document is accessed by any user, details of the user accessing the scanned document is matched with details added in the encoded scanned data. Based on matching, the user is allowed to access the scanned document.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: October 24, 2023
    Assignee: XEROX CORPORATION
    Inventors: Srinivasarao Bindana, Ashok Jason Vedaraj, Shalini Kondore
  • Patent number: 11797767
    Abstract: The present disclosure discloses methods and systems for generating multiple scanned files when scanning a document. The method includes receiving a document for scanning from a user. Once received, a user interface is displayed to the user to input one or more keywords based on which multiple scanned files are to be generated. A single scanned file is generated in a pre-defined format. One or more pages having the keywords as input by the user are identified from the scanned file. Based on the one or more identified pages having the keywords input by the user, separate multiple scanned files are automatically generated. As a result, a single scan activity performed by the user generates multiple scanned files.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: October 24, 2023
    Assignee: XEROX CORPORATION
    Inventors: Srinivasarao Bindana, Dara N Lubin, Madhu Talapaneni
  • Patent number: 11794255
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus is operated to form sloping surfaces having a slope angle of more than 45° from a line that is perpendicular to the structure on which the layer forming the slope surface is formed. The angle corresponds to a step-out distance from the perpendicular line and a maximum individual step-out distance determined from empirically derived data. Multiple passes of an ejection head of the apparatus can be performed within a layer to form a sloped edge and the mass of the sloped structure is distributed within the sloped edge so the edge is formed without defects.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: October 24, 2023
    Assignee: Xerox Corporation
    Inventors: David A Mantell, Christopher T. Chungbin, Daniel Cormier, David G. Tilley, Walter Hsiao, PriyaankaDevi Guggilapu, Michael F. Dapiran, Dinesh Krishna Kumar Jayabal
  • Patent number: D1003945
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 7, 2023
    Assignee: Xerox Corporation
    Inventors: Lindsey C. Frederick, Shane M. Jewitt, Julia N. Catalanello, Amanda C. Zeiser