Patents Assigned to Zimmer Spine, Inc.
  • Patent number: 10219835
    Abstract: An apparatus (10) includes a fastener (16) engageable with a bone portion to connect a longitudinal member (12) to the bone portion. A housing (40) has a first passage (42) configured to receive the longitudinal member (12) and a second passage (44) extending transverse to the first passage. The fastener (16) extends through an opening (50) in the housing (40) into the second passage (44). A longitudinal axis (18) of the fastener (16) is positionable in any one of a plurality of angular positions relative to a longitudinal axis (46) of the second passage (44). A spacer (60) received in the second passage (44) of the housing (40) is engageable with the fastener (16) and the longitudinal member (12). A member (70) applies a force to prevent relative movement between the fastener (16) and the housing (40) and permit manual movement of the fastener (16) relative to the housing (40) against the force when the longitudinal member (12) is disengaged from the spacer (60).
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: March 5, 2019
    Assignee: Zimmer Spine, Inc.
    Inventor: Alan E. Shluzas
  • Patent number: 10188429
    Abstract: A vertebral fixing system having a flexible elongated member, a connecting part, and an anchor, where the anchor may engage a bone structure (e.g., a vertebra) through an opening of the connecting part and the flexible elongated member may connect to the connecting part. In some cases, the vertebral fixing system may include a tightening part configured to apply a tension to the elongated member and/or secure the elongated member with respect to the connecting part. The vertebral fixing system may be configured to receive a rod and may be capable of connecting thereto. The connecting part may have a plurality of connecting members, where at least one of the connecting members includes an opening for receiving the anchor and at least one of the connecting members connects to the elongated member.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: January 29, 2019
    Assignee: Zimmer Spine, Inc.
    Inventors: Daniel Carlson, Hugh Hestad
  • Patent number: 10182844
    Abstract: A polyaxial bone anchor including a housing, a bone screw, and a retainer for pivotably coupling the head of the bone screw to the housing. The retainer is positioned into the bore of the housing and includes a plurality of alternating tabs and slots circumferentially arranged to define a cavity for receiving the head portion of the bone screw therein. The retainer is axially moveable in the housing from a first position in which the head portion is not passable through the lower opening of the retainer to a second position in which the head portion is passable through the lower opening of the retainer.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 22, 2019
    Assignee: Zimmer Spine, Inc.
    Inventors: Alan E Shluzas, Hugh D Hestad
  • Patent number: 10154862
    Abstract: Embodiments described herein provide systems and methods for vertebral reduction using sleeves detachably coupled to collars of bone fasteners. The reduction can be performed during a minimally invasive procedure for implanting spinal stabilization systems. A sleeve can include internal threads that match threads on the respective collar to form a continuous set of threads. Threads on a closure member can be engaged with the threads on the sleeve and the closure member turned to translate the closure member along the sleeve. The closure member can be used to push a rod relative to the collar to which the sleeve is attached to cause a vertebral body to move.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 18, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Peter Thomas Miller, Charles R. Forton, Bruce A. Riceman, Larry T. Khoo, Reginald J. Davis, Michael Scott Hisey
  • Patent number: 10130396
    Abstract: A uniplanar bone anchor including a housing and a bone screw is provided. The lower region of the housing defines mating elements that mate with engaging elements on the bone screw to limit movement of the housing relative to the bone screw to a single plane.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: November 20, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Krishna C Vedula, Hugh D Hestad, Jason Piehl, David Nuckley, Jeremy J. Lemoine
  • Patent number: 10130394
    Abstract: A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient Bone fastener assemblies may be coupled to vertebrae Each bone fastener assembly may include a bone fastener and a collar. The collar may be rotated and/or angulated relative to the bone fastener. Detachable members may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The detachable members may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: November 20, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Michael E. Landry, Larry T. Khoo, Erik J. Wagner, Charles R. Forton, Robert J. Jones
  • Patent number: 10085732
    Abstract: Systems, devices, and methods suitable for use with procedures performed at least partially percutaneously are provided. In some procedures, two or more access devices for providing access to adjacent surgical locations within a patient are used. Certain embodiments of the access device comprise an elongate body having a distal end with one or more cutouts. The cutouts on adjacent access devices are generally aligned with each other to permit passage of a portion of a fixation element from one access device to the other access device. A fastener with an elongated removable head may be delivered to the surgical site through the access device. After a distal end of the fastener is secured to the surgical site, a portion of the elongated housing is detached from the remainder of the fastener and removed from the patient.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: October 2, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Gene P. DiPoto, Stephen J. Anderson
  • Patent number: 10052137
    Abstract: A spinal stabilization system may be formed in a patient. In some embodiments, a minimally invasive procedure may be used to form a spinal stabilization system in a patient Bone fastener assemblies may be coupled to vertebrae Each bone fastener assembly may include a bone fastener and a collar. The collar may be rotated and/or angulated relative to the bone fastener. Detachable members may be coupled to the collar to allow for formation of the spinal stabilization system through a small skin incision. The detachable members may allow for alignment of the collars to facilitate insertion of an elongated member in the collars. An elongated member may be positioned in the collars and a closure member may be used to secure the elongated member to the collars.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 21, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Michael E. Landry, Larry T. Khoo, Erik J. Wagner, Charles R. Forton, Robert J. Jones
  • Patent number: 9968382
    Abstract: A spinal stabilization system may include a pair of structural members coupled to at least a portion of a human vertebra with connectors. Connectors may couple structural members to spinous processes. Some embodiments of a spinal stabilization system may include fasteners that couple structural members to vertebrae. In some embodiments, a spinal stabilization system, provides three points of fixation for a single vertebral level. A fastener may fixate a facet joint between adjacent vertebrae and couple a stabilization structural member to a vertebra. Connectors may couple the structural members to the spinous processes of the vertebrae. Use of a spinal stabilization system may improve the stability of a weakened or damaged portion of a spine. When used in conjunction with an implant or other device, the spinal stabilization system may immobilize vertebrae and allow for fusion of the implant or other device with vertebrae.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 15, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Margaret E. Mitchell, Michael E. Landry, Stephen H Hochschuler, Richard D. Guyer
  • Patent number: 9937056
    Abstract: A spinal implant for stabilizing first and second vertebrae. The spinal implant includes an intervertebral spacer and a bone stabilization member configured to be coupled to the intervertebral spacer. The bone stabilization member includes a plurality of bone screw openings and a plurality of bone screws extendable through the bone screw openings to secure the bone stabilization member to the vertebrae. A retention member, which is slidably coupled to the bone stabilization member, is linearly slidable between a first position and a second position while coupled to the bone stabilization member. In the first position, each of the bone screws is permitted to be inserted into the bone screw openings, and in the second position the retention member at least partially covers each of the bone screw openings to prevent a bone screw from backing out of the respective bone screw opening.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: April 10, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Daniel Carlson, Gregory A Mednikov, Eric W Morris
  • Patent number: 9931149
    Abstract: A driver instrument for engaging and transferring rotational torque to a bone anchor already screwed into a bony structure. The driver instrument may be advanced through an incision while disengaged from the bone anchor and thereafter engaged in a driver socket of the bone anchor. The driver instrument includes an elongate shaft extending distally from a handle, a tapered distal tip, and a driver engagement feature located proximally of the tapered distal tip. The tapered distal tip and the driver engagement feature are configured such that the longitudinal rotational axis of the driver instrument automatically moves into parallel alignment with the longitudinal rotational axis of the bone anchor as the driver engagement feature of the driver instrument is advanced into the driver socket of the bone anchor.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: April 3, 2018
    Assignee: Zimmer Spine, Inc.
    Inventor: Eric P Jerke
  • Patent number: 9888944
    Abstract: A spinal stabilization system generally comprises first and second anchor members configured to be secured to first and second vertebrae within a patient's body, a flexible element secured to the first anchor member, and a rigid element secured to the second anchor member. An end portion of the rigid element is coupled to an end portion of the flexible so that the system is able to provide both rigid and dynamic stabilization. The coupling is maintained even if the flexible element relaxes after a period of time within the patient's body.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 13, 2018
    Assignee: Zimmer Spine, Inc.
    Inventors: Emmanuel Zylber, Thomas Egli, Rosemary Thompson, Markus Froehlich, Giuseppe Cicerchia, Jack A. Dant, Thomas O. Viker, Kevin R. Ley
  • Patent number: 9848913
    Abstract: An apparatus (10) includes a fastener (16) engageable with a bone portion to connect a longitudinal member (12) to the bone portion. A housing (40) has a first passage (42) configured to receive the longitudinal member (12) and a second passage (44) extending transverse to the first passage. The fastener (16) extends through an opening (50) in the housing (40) into the second passage (44). A longitudinal axis (18) of the fastener (16) is positionable in any one of a plurality of angular positions relative to a longitudinal axis (46) of the second passage (44). A spacer (60) received in the second passage (44) of the housing (40) is engageable with the fastener (16) and the longitudinal member (12). A member (70) applies a force to prevent relative movement between the fastener (16) and the housing (40) and permit manual movement of the fastener (16) relative to the housing (40) against the force when the longitudinal member (12) is disengaged from the spacer (60).
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: December 26, 2017
    Assignee: Zimmer Spine, Inc.
    Inventor: Alan E. Shluzas
  • Patent number: 9833267
    Abstract: Embodiments disclosed herein provide compression/distraction methods and tools useful for fitting a spinal stabilization system in a patient through minimally invasive surgery. The spinal stabilization system may comprise screws anchored in vertebrae. The vertebrae may need to be compressed or distracted. One embodiment of an instrument disclosed herein may comprise a shaft for engaging one of the screws through an extender sleeve. A driver may engage another screw through an opening of the instrument. Through this engagement, a surgeon may use the rack and pinion of the instrument to compress or distract one or more levels of the vertebrae in a parallel motion, which can be advantageous clinically in certain situations.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: December 5, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Emily King, Bruce A. Riceman, Charles R. Forton, Peter Thomas Miller
  • Patent number: 9814498
    Abstract: A system for reduction of vertebral bodies (or vertebrae) in various embodiments includes a reducer, and extender, and a hollow tube. The reducer couples to the extender, which in turn couples to an elongated member, such as a rod, and to a bone fastener assembly. The reducer allows reduction of the vertebral body incrementally, and by a desired amount. The reducer may include or may be used in conjunction with a holding device or holder in order to hold or keep the amount of reduction constant or steady once the desired amount of reduction has been obtained. The reducer may use one of several embodiments, including embodiments that use threaded assemblies or members, inclining members or wedges, offset cams, scissor jacks, and/or levers.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: November 14, 2017
    Assignee: Zimmer Spine, Inc.
    Inventor: Matthew E. Seelig
  • Patent number: 9782203
    Abstract: A method of inserting a spinal stabilization system into a patient generally comprises inserting a first positioning tool through a first location on a patient's skin and along a path generally toward a first vertebral anchor, coupling an end of the first positioning tool to the first vertebral anchor, positioning at least a portion of a delivery device over a connecting element, and inserting the delivery device and the connecting element through the patient's skin at the first location and along at least a portion of the first positioning tool. The first positioning tool is configured to facilitate directing the delivery device and connecting element generally toward a second vertebral anchor within the patient's body.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: October 10, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Mark Darst Rice, Emmanuel Zylber
  • Patent number: 9770266
    Abstract: A vertebral column correction system for correcting a spinal deformity without fusing the joint segments is disclosed. The vertebral column correction system may have first and second vertebral anchors secured to first and second vertebrae. The vertebral column correction system may further comprise one or more intermediate vertebral anchors secured to vertebrae between the first and second vertebrae. A connection member may be disposed within a head portion of the vertebral anchors. At least a portion of the connection member may be a flexible member, such as a flexible cord, configured for tensioning between at least two vertebral anchors for providing a desired amount of tension to apply a correctional force to the spinal column. A spring member, or other tensioning member, may maintain the tension of the connection member.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: September 26, 2017
    Assignee: Zimmer Spine, Inc.
    Inventor: Hugh D Hestad
  • Patent number: 9750512
    Abstract: An adjustable apparatus for guiding medical instruments used in attaching bone plates. The apparatus has a handle assembly, guide member, a spacer, and an actuation member. The actuation member extends from the handle assembly and actuates the spacer between a position adjacent the guide member and a position spaced from the guide member. The spacer has a through hole that may axially align with a lumen extending through the guide member when in the first position and which is moved out of axial alignment with the lumen in the second position. The spacer may function as a depth stop to control the maximum depth a drill bit can extend from the guide member.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: September 5, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Eric P. Jerke, Peter G. Schulte, David W. Castleman, Andrew Olson, Jack A. Dant, Eric J. Lundequam, Hugh D. Hestad
  • Patent number: 9737341
    Abstract: A transverse connector for coupling between first and second elongate members of a spinal stabilization system. The transverse connector includes a connector arm, a first coupling assembly proximate a first end of the arm, and a second coupling assembly proximate a second end of the arm. The first and second coupling assemblies are secured to the connector arm through a plurality of mating engagement features, such as dovetail grooves.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: August 22, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Jack A Dant, Deborah Lynn Hoch, Eric P Jerke, Eric J Lundequam
  • Patent number: 9707019
    Abstract: Embodiments described herein provide systems and methods for vertebral reduction using sleeves detachably coupled to collars of bone fasteners. The reduction can be performed during a minimally invasive procedure for implanting spinal stabilization systems. A sleeve can include internal threads that match threads on the respective collar to form a continuous set of threads. Threads on a closure member can be engaged with the threads on the sleeve and the closure member turned to translate the closure member along the sleeve. The closure member can be used to push a rod relative to the collar to which the sleeve is attached to cause a vertebral body to move.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: July 18, 2017
    Assignee: Zimmer Spine, Inc.
    Inventors: Peter Thomas Miller, Charles R. Forton, Bruce A. Riceman, Larry T. Khoo, Reginald James Davis, Michael Scott Hisey