Patents Examined by Aaron Greso
  • Patent number: 9017867
    Abstract: Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 28, 2015
    Assignees: Battelle Memorial Institute, The Trustees of Princeton University
    Inventors: Jun Liu, Ilhan A. Aksay, Daiwon Choi, Rong Kou, Zimin Nie, Donghai Wang, Zhenguo Yang
  • Patent number: 9017839
    Abstract: An all-solid lithium secondary battery which uses a sulfide-based solid electrolyte material and has a power-generating element that has formed therein an oxide layer containing substantially no moisture, which is produced by oxidation of the sulfide-based solid electrolyte material in a zone where the electrolyte-containing layer containing at least the sulfide-based solid electrolyte material is in contact with an external air.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Tsuchida, Fuminori Mizuno
  • Patent number: 9011727
    Abstract: Blending an electrically active, anodically coloring, electrochromic polymer with a non-electrochromic, non-electrically conductive binder polymer greatly enhances the performance of the anodically coloring, electrochromic polymer in an electrochromic device over time. In addition to improved physical characteristics of the blend, e.g., film build, durability etc, the coloristic properties, including color space and color strength, of the device comprising the blend are more durable than when using the neat polymer, and in certain instances, the color space and color intensity provided by the blend is superior to that available from the neat polymer.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Nancy Cliff, David Yale, Deanna Rodovsky, Jennifer Jankauskas
  • Patent number: 9012053
    Abstract: An electrode assembly and a rechargeable battery including the same, the electrode assembly including a first electrode, a second electrode, and a separator interposed therebetween, wherein the first electrode, the second electrode, and the separator are spiral-wound in a jelly-roll structure, the first electrode includes at least two first uncoated regions separated from each other and a first tab coupled to one of the first uncoated regions and a second tab coupled to another of the first uncoated regions, the first tab and the second tab protruding from one side of the jelly-roll structure, the first tab is disposed near a center of the jelly-roll structure and the second tab is disposed near an outer circumference of the jelly-roll structure, and a width of the first tab is smaller than a width of the second tab.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 21, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Kwan-Sic Chun
  • Patent number: 9000089
    Abstract: Polyurea systems comprising: (a) an amino-functional aspartic ester of the general formula (I) wherein X represents an n-valent organic radical derived from a corresponding n-functional primary amine X(NH2)n, R1 and R2 each independently represent an organic radical having no Zerevitinov active hydrogens and n represents an integer of at least 2; and (b) an isocyanate functional prepolymer having a residual monomer content of less than 1% by weight, the prepolymer prepared by reacting: (b1) an aliphatic isocyante; and (b2) a polyol component having a number average molecular weight of ?400 g/mol and an average OH functionality of 2 to 6, wherein the polyol component comprises one or more constituents selected from the group consisting of polyester polyols, polyester-polyether polyols and mixtures thereof; processes for making the same; postoperative adhesions barriers prepared therewith and dispensing systems for such polyurea systems.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: April 7, 2015
    Assignee: Medical Adhesive Revolution GmbH
    Inventors: Heike Heckroth, Hartmut Nefzger, Christian Wamprecht
  • Patent number: 8993181
    Abstract: A valve-closing pressure chamber and a valve-opening pressure chamber are arranged on both sides of a main diaphragm inside an outlet shutoff valve. An upper supply/discharge tube and a lower supply/discharge tube are connected to a housing forming the outlet shutoff valve. The upper and lower supply/discharge tube supply and discharge air to and from the valve-closing pressure chamber and the valve-opening pressure chamber, respectively. An opening end, which is on the pressure chamber side, of each supply/discharge tube is obliquely cut relative to the direction of axis of the supply/discharge tube, which increases the opening area of the opening end. This prevents water present in the pressure chamber from adhering to the opening end of each supply/discharge tube and prevents the adhered water from freezing. As a result, operation performance of the outlet shutoff valve is enhanced.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: March 31, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahiro Takeshita
  • Patent number: 8993178
    Abstract: A magnesium battery (10) is constituted of a negative electrode (1), a positive electrode (2) and an electrolyte (3). The negative electrode (1) is formed of metallic magnesium and can also be formed of an alloy. The positive electrode (2) is composed of a positive electrode active material, for example, a metal oxide, graphite fluoride ((CF)n) or the like, etc. The electrolytic solution (3) is, for example, a magnesium ion-containing nonaqueous electrolytic solution prepared by dissolving magnesium(II) chloride (MgCl2) and dimethylaluminum chloride ((CH3)2AlCl) in tetrahydrofuran (THF). In the case of dissolving and depositing magnesium by using this electrolytic solution, the following reaction proceeds in the normal direction or reverse direction.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 31, 2015
    Assignee: Sony Corporation
    Inventors: Yuri Nakayama, Kenta Yamamoto, Yoshihiro Kudo, Hideki Oki
  • Patent number: 8986896
    Abstract: The present invention provides an electrolyte solution including: a solvent composed primarily of a BF3-cyclic ether complex; and a supporting electrolyte. For example, preferred is an electrolyte solution in which the cyclic ether is one or two or more selected from optionally substituted tetrahydrofuran and optionally substituted tetrahydropyran.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: March 24, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Shizuoka University
    Inventors: Tatsuo Fujinami, Tatsuya Koga
  • Patent number: 8987374
    Abstract: The present invention provides a non-aqueous composition containing a particulate solid, an organic medium and a polyurethane dispersant having an essentially linear backbone and laterally attached solvent-solubilizing side chains of a polyester, a polyether, a polyacrylate or a polyolefin including mixtures of such side chains.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: March 24, 2015
    Assignee: The Lubrizol Corporation
    Inventors: Stuart Nicholas Richards, Andrew James Shooter
  • Patent number: 8969471
    Abstract: A process for the preparation of stable aqueous polycarbodiimide dispersions to be used as cross-linking agents, in which initially an isocyanate functional polycarbodiimide is prepared from a polyisocyanate and a mono- or polyisocyanate which contains a hydrophobic group. Thereafter the polycarbodiimide chain is capped and/or extended by reaction of the isocyanate functions or a part thereof with a hydrophilic amine- or hydroxy functional compound and of the remaining isocyanate functions with an amine- or hydroxy functional compound which contains hydrophobic groups, after which the obtained product is dispersed in water and the pH is adjusted to 9-14. The hydrophobic groups are hydrocarbons with 4-25 carbon atoms, fluorinated hydrocarbons, silicone functional hydrocarbons or polysilicones. Further, the invention relates to a coating mixture in which the polycarbodiimide dispersion is used as cross-linking agent and to the cured material obtained with the coating mixture.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: March 3, 2015
    Assignee: Stahl International B.V.
    Inventors: Laurentius Cornelis Josephus Hesselmans, Marthe Hesselmans, Andries Johannes Derksen
  • Patent number: 8968941
    Abstract: A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 3, 2015
    Assignee: Uchicago Argonne, LLC
    Inventors: Khalil Amine, Larry A. Curtiss, Jun Lu, Kah Chun Lau, Zhengcheng Zhang, Yang-Kook Sun
  • Patent number: 8962749
    Abstract: The invention provides a ceramic green sheet having plasticity, punching property, and sinterability of satisfactory levels as well as a low percent (heat) shrinkage. In the production of a ceramic slurry serving as a raw material of the sheet, ingredients thereof are mixed under such conditions that the functional group ratio (polyol to isocyanate) is 1.5/11.5 to 11.5/11.5; the urethane resin formed from isocyanate and polyol has a repeating-unit-based molecular weight of 290 to 988; and the ratio by weight of the urethane resin to a ceramic powder falls within a range of 4.5 to 10 parts by weight of the urethane resin with respect to 100 parts by weight of the ceramic powder. A ceramic green sheet having, in well balance, all of the properties (i.e., plasticity, punching property, sinterability, and (heat) shrinkage) required for facilitating subsequent processes such as mechanical working and firing can be provided.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 24, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Koji Kimura, Takuji Kimura, Tetsuya Onogi, Hidemi Nakagawa
  • Patent number: 8956785
    Abstract: A flow field plate for fuel cell applications includes a metal with a non-crystalline carbon layer disposed over at least a portion of the metal plate. The non-crystalline carbon layer includes an activated surface which is hydrophilic. Moreover, the flow field plate is included in a fuel cell with a minimal increase in contact resistance. Methods for forming the flow field plates are also provided.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: February 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Gayatri Vyas Dadheech, Thomas A. Trabold, Youssef M. Mikhail, Mahmoud H. Abd Elhamid
  • Patent number: 8945793
    Abstract: A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate, and mixtures thereof, (b) sintering the slurry of step (a), (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the resulting sintered structure of step (b) with the precursor solution of step (c), (e) subjecting the resulting structure of step (d) to calcination, and (f) conducting steps (d)-(e) at least once.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 3, 2015
    Assignee: Technical University of Denmark
    Inventors: Peter Blennow, Mogens Mogensen, Kent Kammer Hansen
  • Patent number: 8932497
    Abstract: Fire retardant coating systems and solid body cast systems comprise a first part comprising at least one ingredient having NCO functionality; and a second part comprising at least one ingredient having an active hydrogen functionality that is co-reactive with the NCO, wherein the first part and the second part are formulated so that when the parts are mixed together they form a cured coating or a solid body. The coating system or solid body cast system comprises a first fire retardant ingredient that is a phosphorus-based compound, a second fire retardant ingredient that is an intumescent material, and a third fire retardant ingredient that is a brominated ingredient. Methods for preparing a fire retardant coating or solid body are also described.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: January 13, 2015
    Inventors: Laxmi C. Gupta, Ashish Dhuldhoya
  • Patent number: 8927125
    Abstract: A quencher for a flow cell battery is described. The quencher utilizes a quench solution formed from FeCl2 in a dilute HCl solution in order to quench chlorine emissions from the flow cell battery. A quench sensor is further described. The quench sensor monitors the concentration level of FeCl2 in the quench solution and may also monitor the level of the quench solution in the quencher.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: January 6, 2015
    Assignee: Imergy Power Systems, Inc.
    Inventors: Majid Keshavarz, Saroj Kumar Sahu, Ge Zu
  • Patent number: 8927165
    Abstract: A method for controlling relative humidity (RH) of a cathode side of a fuel cell stack in a fuel cell system that includes an RH sensor on a cathode inlet line for providing an RH signal indicative of the RH of cathode inlet air. If the RH sensor is providing a valid RH signal, the RH signal is calculated as an RH average of the cathode inlet air. When the RH sensor is not providing a valid RH signal, the calculated RH average is utilized to control the cathode inlet air RH. If the RH sensor is not providing a valid signal during start-up, then the stack power is temporarily set at an optimum level for a known cathode inlet air RH.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Dongmei Chen, Victor W. Logan, Matthew C. Kirklin
  • Patent number: 8920973
    Abstract: A positive electrode active material for nonaqueous electrolyte secondary batteries includes a coating layer containing at least nickel (Ni) and/or manganese (Mn) on the surface of a complex oxide particle containing lithium (Li) and cobalt (Co), wherein a binding energy value obtained by analysis of a surface state by an ESCA surface analysis on the surface of the coating layer is 642.0 eV or more and not more than 642.5 eV in an Mn2p3 peak, and a peak interval of Co—Mn is 137.6 eV or more and not more than 138.0 eV.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 30, 2014
    Assignee: Sony Corporation
    Inventor: Yuki Takei
  • Patent number: 8906560
    Abstract: Organic/inorganic complex proton conductors are provided which display high proton conductivity over a wide temperature range. Electrodes for fuel cells which include the organic/inorganic complex proton conductors are also provided. The invention also advantageously provides electrolyte membranes for fuel cells including the organic/inorganic complex proton conductors, and fuel cells including the organic/inorganic complex proton conductors.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Jin Lee, Tae-young Kim, Pil-won Heo
  • Patent number: 8900759
    Abstract: Tube electrochemical reactor bundle or stack, having a structure, in which a plurality of tube fuel cells, formed of a dense ion conductor (electrolyte) and cathode (air electrode) laminated to an anode (fuel electrode) material having a tube structure, are electrically connected by a thin metallic wire, and an electrochemical reactor system using them are provided.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 2, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Toshio Suzuki, Toshiaki Yamaguchi, Yoshinobu Fujishiro, Masanobu Awano