Patents Examined by Adolf Berhane
  • Patent number: 10073474
    Abstract: A method of controlling a current flowing through a load including the steps of: applying a first transfer function representative of the load to a first voltage to obtain a second voltage; applying the second voltage to a first terminal of a circuit for generating the current; sampling a third voltage between first and second terminals of the load; comparing the third voltage with the second voltage; and determining the current to be supplied to the load according to the result of the comparison.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: September 11, 2018
    Assignee: STMicroelectronics (Alps) SAS
    Inventors: Patrik Arno, Alexandre Balmefrezol
  • Patent number: 10069412
    Abstract: A voltage converter includes a converting circuit and a switching control circuit, where the converting circuit includes an inductor connected to a switching node, a first switching device connected between the switching node and a common voltage and a second switching device connected to the switching node, where the first switching device charges the inductor and discharges the inductor in response to a control signal, and the switching control circuit generates the control signal by performing a PWM and a PFM based on a first sensing signal, a second sensing signal and a feedback signal, and adjusts a charging time of the inductor on a time basis, based on at least the input power supply voltage when the switching control circuit performs the PFM.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: September 4, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyoung-Jin Lee, Ha-Neul Kim, Hyoung-Seok Oh
  • Patent number: 10069405
    Abstract: An apparatus and method for use in electrical conversion are described. The apparatus includes a bridge rectifier having an input side and an output side, and a switched capacitor line connected across the output side of the rectifier, wherein the switched capacitor line includes a capacitor, a charging leg and a switched discharge leg, and wherein the charging leg incorporates a transistor controlled so as to maintain a substantially constant charging current when the transistor is conductive.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 4, 2018
    Assignee: University of Plymouth
    Inventor: Mohammed Ahmed
  • Patent number: 10069421
    Abstract: A multi-phase switching voltage regulator includes a controller and a plurality of power stages each configured to deliver output current to a load through an inductor. At least one of the inductors has a higher open circuit inductance than the other inductors so that at least one of the power stages has a different output inductance compared to the other power stages. The controller is configured to control switching of the power stages so as to regulate an output voltage of the multi-phase switching voltage regulator, including allowing all of the power stages to provide current to the load through the respective inductors during a full power event at the load and preventing all of the power stages except for the at least one power stage having the higher open circuit inductance from providing current to the load during a low power event at the load.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: September 4, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Emil Todorov, Benjamim Tang
  • Patent number: 10067520
    Abstract: A linear power supply circuit includes a first output transistor of a P-channel type or pnp type which is connected between an input terminal to which an input voltage is input and an output terminal from which an output voltage is output; a first differential amplifier configured to amplify a difference between the output voltage or a feedback voltage according to the output voltage and a predetermined first reference voltage and output a first amplification voltage; a second differential amplifier configured to amplify a difference between the input voltage or a first monitor voltage according to the input voltage and the output voltage or a second monitor voltage according to the output voltage and output a second amplification voltage; and a first driver configured to generate a control voltage of the first output transistor according to the first amplification voltage and the second amplification voltage.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: September 4, 2018
    Assignee: Rohm Co., Ltd.
    Inventors: Kotaro Iwata, Hiroki Inoue, Zhencheng Jin
  • Patent number: 10063144
    Abstract: A multi-phase buck converter comprises a first comparator, a second comparator and a counter. The first comparator has a first node connected to a first voltage reference and a second node. The second comparator has a first node connected to a second voltage reference and a second node. The second node of the second comparator and the second node of the first comparator are together connected to an input voltage from an active phase of the buck converter. The counter is configured to adjust a number of active phases of the buck converter based on the input voltage.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: August 28, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alan Drake, Eric Soenen, Alan Roth, Russell Kinder
  • Patent number: 10063143
    Abstract: In a power converter system, circuitry generates first and second PWM signals during a PWM cycle for controlling application of power to an inductor. Circuitry generates error signals having AC- and DC-components, the error signals being generated in response to indications of the power applied to or developed by the inductor. Circuitry generates a feedback control signal in response to the error signals. The first and second PWM signals are controlled in response to the feedback control signals.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: August 28, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jiwei Fan, Mingyue Zhao, Huy Le Nhat Nguyen
  • Patent number: 10063154
    Abstract: A power conversion circuit including an SR MOSFET is provided. A minimum off-time timer for the SR MOSFET is started. A voltage potential at a first terminal of the SR MOSFET is measured. The SR MOSFET is turned on after a rate of change over time of the voltage potential exceeds a first threshold and before the minimum off-time timer expires.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 28, 2018
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Karel Ptacek, Tomas Tichy
  • Patent number: 10062499
    Abstract: A power module including a power device and a magnetic component is provided. The magnetic component is stacked with the power device and a vertical projection of the magnetic component is at least partially overlapping with the power device. The magnetic component includes a magnetic core and a winding set. The magnetic core includes a first surface, a second surface and at least one window. The window is located between the first surface and the second surface, and includes a passing-through axis vertical to a surface of the power device, where at least one leading pin or pad is disposed on the surface of the power device. The winding set includes at least one winding portion. The winding portion passes through the window and electrically connected to the power device. Each winding set and the magnetic core are configured to form an inductor, and the winding set is preformed.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: August 28, 2018
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Pengkai Ji, Jinping Zhou, Shouyu Hong, Tao Wang, Jianhong Zeng, Zhangnan Xin
  • Patent number: 10063155
    Abstract: Various systems and methods are disclosed herein, which provide isolated systems with an auxiliary, multi-signal digital feedback loop for reporting a plurality of different potential fault conditions in an output system (e.g., output short circuit, output over-voltage, output under-voltage, output over temperature, etc.) to a Primary Controller in an input system. The signals may be sent according to any desired standardized (or proprietary) data transmission protocols. Use of a digital feedback loop allows the signals to be passed to the Primary Controller more quickly than is allowed by traditional analog feedback paths—and while using only a single optocoupler device for the transmission of all fault conditions. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, monitors, as well as desktop, laptop, and tablet computers.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 28, 2018
    Assignee: Apple Inc.
    Inventors: Behzad Mohtashemi, Asif Hussain, Manisha P. Pandya, Mohammad J. Navabi-Shirazi, Nileshbhai J. Shah
  • Patent number: 10061334
    Abstract: A voltage regulator includes an output transistor controlled by an error amplifier, first and second resistors connected in series between an output terminal and a ground terminal via a first node, third and fourth resistors connected in series between a load voltage monitoring terminal and the ground terminal via a second node, and a fifth resistor and a switching transistor connected in series between the first node and the ground terminal. When a voltage which is supplied to a load connected to the output terminal drops due to a parasitic resistance, a voltage at the second node falls below that of the first node. The switching transistor, then, turns on to connect the fifth resistor in parallel to the second resistor to lower the voltage at the first node. Feedback of this voltage to the error amplifier raises the voltage at the output terminal to a desired value.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: August 28, 2018
    Assignee: ABLIC INC.
    Inventor: Teruo Suzuki
  • Patent number: 10062528
    Abstract: An electrical load controller includes an electrical switching device and an actuator assembly having at least one user actuator for use in turning power on and off to the load and for use in adjustably controlling the level of power to the load. A frame attached to the actuator includes an integrally formed backlightable indicator region having an outer continuous solid surface. Light from an illumination assembly related to the level of power to the load is directable onto a portion of an inner surface of the backlightable indicator region, transmittable through the backlightable region from the inner surface to the outer surface, emittable from a portion of the outer surface, and observable by the user.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: August 28, 2018
    Assignee: Leviton Manufacturing Co., Inc.
    Inventors: Adam Kevelos, Renjith Mathew
  • Patent number: 10056822
    Abstract: A control circuit for a switching regulator implementing a fixed frequency constant on-time control scheme incorporates a reference voltage generator to generate a reference voltage ramp that varies over substantially the entire switching period. In one embodiment, the reference voltage increases from an initial voltage value at the start of each switching period towards the end of the switching period and is reset to the initial voltage value at the end of each switching period. The reference voltage ramp ensures stable feedback control operation in the switching regulator without introducing voltage offset for all output voltage values. The control circuit enables the switching regulator to apply constant on-time control scheme while using an output capacitor having any ESR value, including an output capacitor with low or zero ESR.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: August 21, 2018
    Assignee: Alpha and Omega Semiconductor (Cayman) Ltd.
    Inventors: Zhiye Zhang, Zhinan Wei
  • Patent number: 10056844
    Abstract: A power converter with an isolated topology may include a primary side and a secondary side. The secondary side includes a self-powered synchronous rectifier. The synchronous rectifier includes a synchronous rectifier transistor having at least a drain and a gate, a voltage regulator having at least an input that is coupled to the drain of the synchronous rectifier transistor, and an auxiliary transistor having at least a drain that is coupled to the drain of the synchronous rectifier transistor. The auxiliary transistor is on a same die as the synchronous rectifier transistor. The synchronous rectifier also includes a clamping device having at least an output that is coupled to the gate of the auxiliary transistor, and a gate driver circuit having at least: a power supply input that is coupled to the output of the voltage regulator, and an output that is coupled to a gate of the synchronous rectifier transistor.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: August 21, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Roberto Quaglino, Giuseppe Bernacchia
  • Patent number: 10050549
    Abstract: A power converter unit comprising a rectifier arranged to receive AC input from a variable or fixed frequency AC power source and an active power filter with an adaptive control algorithm connected as a shunt between the AC input and the rectifier.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: August 14, 2018
    Assignee: GOODRICH CONTROL SYSTEMS
    Inventors: Francisco Gonzalez-Espin, Thomas Gietzold
  • Patent number: 10050520
    Abstract: The present disclosure illustrates a charge pump circuit. The charge pump circuit includes an input voltage module and a switching transistor module. The input voltage module is configured for providing an input voltage. The switching transistor module is configured for receiving a supply voltage and the input voltage. There is a voltage difference between the supply voltage and the input voltage. During a first charging period, the switching transistor module charges a first capacitor, and a voltage across the first capacitor is the voltage difference. During a second charging period, the switching transistor module charges a second capacitor, and a voltage across the second capacitor is a sum of the supply voltage and the voltage difference. A frequency which the switching transistor module charges the second capacitor is higher than a frequency which the second capacitor provides voltage to a bridge circuit.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: August 14, 2018
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Ming-Jung Tsai
  • Patent number: 10050555
    Abstract: The present disclosure relates to power supplies and control methods for power supplies. Example power supplies include an output terminal, a transformer having a secondary winding including a first terminal and a second terminal, first and second diodes coupled between the output terminal and the first and second terminals, respectively, first and second switches coupled between the output terminal and the first and second terminals, respectively, and a controller coupled to the first switch and the second switch. The controller is configured to control the power supply in an asynchronous mode when output current is below a defined threshold so current flows to the output terminal through the first diode and the second diode, and to control the power supply in a synchronous mode when output current is above the defined threshold so current flows to the output terminal through the first switch and the second switch.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: August 14, 2018
    Assignee: VERTIV ENERGY SYSTEMS, INC.
    Inventor: Franklin Gilchrist, Jr.
  • Patent number: 10050620
    Abstract: An apparatus that includes a first device connected to an inductor. The first device includes a first silicon carbide (SiC) junction gate field-effect transistor (JFET), a first SiC schottky barrier diode (SBD) connected to a gate and a drain of the first SiC JFET, and a first silicon (Si) transistor connected to transmit current to a source of the first SiC JFET. An inductor input terminal is connected to the drain of the first SiC JFET.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: August 14, 2018
    Assignee: RENESAS ELECTRONICS AMERICA INC.
    Inventors: Tetsuo Sato, Koichi Yamazaki
  • Patent number: 10050531
    Abstract: Systems and methods related to controlling flux through an inductor of a power converter are described. For example, a control system is configured to control a multi-level converter having a first leg, a second leg, and at least one inductor. The control system includes a processor operatively coupled to a memory. The processor receives a reference signal. The processor determine flux through at least one inductor of a converter. The processor controls a temporal distribution of the flux through the at least one inductor based on the flux through the at least one inductor according to the reference signal.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: August 14, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Di Zhang, Ruxi Wang, Satish Prabhakaran
  • Patent number: 10050551
    Abstract: An arrangement, method and computer program product are provided for limiting circulating currents in a converter converting between AC and DC. The converter has a number of AC and DC terminals and includes a number of converter arms, where a first and a second converter arm are connected in parallel between a first DC terminal and a first AC terminal. Each converter arm includes a string of series-connected converter cells. The arrangement includes a control unit that obtains a current of the first converter arm and a current of the second converter arm, forms an average of the two converter arm currents, forms a first and a second voltage control signal based on the average and uses the first and second voltage control signal in the control of the voltage provided by the first and second converter arm.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: August 14, 2018
    Assignee: ABB SCHWEIZ AG
    Inventors: Sri Ramya Kalluri, Gaurav-Kumar Kasal, Ying Jiang-Häfner, Jürgen Häfner