Patents Examined by Albert W. Davis, Jr.
  • Patent number: 5482113
    Abstract: A heat exchanger, especially for use in conjunction with a wide range of computer systems ranging from work stations to massively parallel processors is employable with both air and water cooling systems. In particular, a heat exchanger is provided which is convertible from a heat sink modality to an air cooling modality and finally to a liquid cooling modality in response to either increased performance demands or an increase in the number of processors or circuit components employed. The conversion may be carried out in the field and provides a flexible and less costly upgradeability path for data processing customers.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: January 9, 1996
    Assignee: International Business Machines Corporation
    Inventors: Dereje Agonafer, Timothy M. Anderson, Gregory M. Chrysler, Richard C. Chu, Robert E. Simons, David T. Vader
  • Patent number: 5417277
    Abstract: A heat exchanger, such as a condenser for a motor vehicle air conditioning installation, has a fluid manifold comprising a tubular wall having a number of through apertures in which the ends of fluid flow tubes of the heat exchanger are fitted. These apertures are aligned in the axial direction. In the region of the tubular wall lying between two consecutive ones of the said apertures, the tubular wall is formed with a concavity or a flat extending in the circumferential direction. The tubular wall can thus be immobilized against rotation by applying it against a flat surface so that the flow tubes can be correctly introduced into the apertures.
    Type: Grant
    Filed: September 29, 1992
    Date of Patent: May 23, 1995
    Assignee: Valeo Thermique Moteur
    Inventor: Philippe Le Gauyer
  • Patent number: 5404938
    Abstract: A single assembly heat transfer device installed in an environmental control apparatus having a primary evaporator, a two-section heat pipe having an evaporator section and a condenser section, and an end plate. The primary evaporator, the evaporator section and the condenser section are mounted on the end plate, thereby forming a single assembly.
    Type: Grant
    Filed: November 17, 1992
    Date of Patent: April 11, 1995
    Assignee: Heat Pipe Technology, Inc.
    Inventor: Khanh Dinh
  • Patent number: 5398747
    Abstract: A method and system for preheating one or more auxiliary components of an automotive vehicle having an internal combustion engine or other means for producing hot exhaust gases. The method and system use waste thermal energy extracted from engine exhaust gases produced when the engine is running. This thermal energy is stored in a special thermal storage material in the form of chemical potential by a direct dehydration/hydration process. The thermal energy is released during a cold start and used to warm ambient air, which may then be conveyed to one or more desired auxiliary components, such as the catalytic converter, the passenger cabin or the like.
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: March 21, 1995
    Assignee: Tufts University
    Inventor: Ioannis N. Miaoulis
  • Patent number: 5398519
    Abstract: A thermal control system in which a boiling liquid refrigerant is vaporized by heat addition from the system electronics. The pressure on the boiling liquid refrigerant and the vaporized refrigerant thereover is maintained constant so that the temperature of vaporization is maintained constant. For this reason, the boiling liquid refrigerant rapidly vaporizes and concomitantly removes from the system the very large amount of heat required for the refrigerant to pass from the liquid to the gaseous phase. The heat transfer rates under these conditions are extremely high. In addition to heat addition to the liquid before vaporization, the mass of liquid vaporized absorbs heat during vaporization of the liquid. The transition from liquid to vapor occurs at a constant temperature which is controlled by controlling the pressure at which the vaporization takes place.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: March 21, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Richard Weber, Donald C. Price
  • Patent number: 5390729
    Abstract: Cooling liquid flowing through cooling-liquid passages cools in heat-transmission manner an inner layer on an inner surface of an impermeable intermediate layer and is directed through a piping to an interface between the intermediate and outer layers, whereby the porous outer layer is cooled by latent heat generated by evaporation of the cooling liquid infiltrated into the porous outer layer.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: February 21, 1995
    Assignee: Ishikawajima-Harima Jukogyo Kabushiki Kaisha
    Inventors: Akira Sakurai, Masahiro Shiotsu, Toshikazu Yano, Masao Ochi, Toshihiro Sugawara
  • Patent number: 5390730
    Abstract: A vessel-type fluid cooling system includes an upper mixing chamber and a lower holding chamber, the chambers being separated by a transverse separating wall. One or more cooling tubes extend between the mixing chamber and the holding chamber, and cooling elements, such as fluid-cooled tubes, are located within each cooling tube. A heated fluid inlet provides heated fluid to the mixing chamber, and a cooled fluid outlet discharges cooled fluid from the holding chamber. Each cooling tube includes one or more inlets toward its upper end, and fluid is supplied from the mixing through the inlets to passages defined by the cooling tubes for cooling the fluid as the fluid flows downwardly through the cooling tubes. The cooled fluid is discharged into the holding chamber.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: February 21, 1995
    Assignee: Sterling, Inc.
    Inventor: John V. Goelzer
  • Patent number: 5388637
    Abstract: An integral adsorbent-heat exchanger apparatus for use in ammonia refrigerant heat pump systems. The apparatus has a finned tube heat exchange member. A bonded, pyrolyzed activated carbon adsorbent matrix, formed from a mixture of activated carbon particles and resol bonder, is tightly adjoined to the fins and the tube to form an integral apparatus. The integral apparatus is capable of withstanding repetitive adsorption and desorption cycles without the matrix becoming unbonded and without the matrix becoming unadjoined from the fins and tube. The apparatus permits very high rates of adsorption and desorption of refrigerant and very high rates of heat transfer between the refrigerant and the heat transfer fluid.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: February 14, 1995
    Assignee: California Institute of Technology
    Inventors: Jack A. Jones, Andre H. Yavrouian
  • Patent number: 5388415
    Abstract: A system for a cooler comprises: a heat exchange tube receiving a supply of pressurized gas, a gas escape aperture communicating with the interior of the heat exchange tube for permitting escape of the pressurized gas and expansion thereof during cooling mode, and a bypass assembly associated with said heat exchange tube and located after said gas escape aperture which during a cleaning mode enables most of the pressurized gas to exit the heat exchange tube without flowing through said gas escape aperture. The bypass assembly comprises a flush valve which is closed during said cooling mode and which is opened during said cleaning mode. According to a preferred embodiment, the heat exchange tube is helically wound over a cylindrical core and installed inside an insulated housing. The system may also be utilized as a gas purity tester, optionally with an additional gas pressure regulator, wherein a sensor will indicate the extent of the gas purity.
    Type: Grant
    Filed: January 5, 1994
    Date of Patent: February 14, 1995
    Assignee: State of Israel - Ministry of Defence Armament Development Authority, Rafael
    Inventors: Ofer Glinka, Shmuel Segev, Ariel Trau
  • Patent number: 5385203
    Abstract: According to the present invention there is provided a small-sized thermosiphon free from deterioration in its cooling efficiency caused by pressure loss of a refrigerant and in which a two-phase flow of a fluid to be cooled is sure to be distributed uniformly. The thermosiphon includes a cooling cylinder 1 having a plurality of independent refrigerant tanks 2 formed by partition walls 1c which are disposed between fluid inlet port 1a and outlet port 1b inside the cylinder, and a plate fin type heat exchanger 50 extending inside the cylinder through the partition walls 1c hermetically sealably. Under this construction, it is not necessary to use pipes for the circulation of refrigerant C between the refrigerant tanks 2 and refrigerant circulation paths 54 in the heat exchanger 50, thus preventing the deterioration of the cooling efficiency caused by pressure loss of the refrigerant.
    Type: Grant
    Filed: January 11, 1994
    Date of Patent: January 31, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Ken-ichiro Mitsuhashi, Koichi Ueno, Shin-ichiro Kashihara
  • Patent number: 5381860
    Abstract: A method and apparatus for maintaining a narrow thermocline in a thermal energy liquid storage tank in a cooling system for a commercial building in which the tank provides cooling liquid, e.g., water, during a peak electricity demand period to allow the building system to reduce its electric demand during such period. The tank incorporates a water distribution system including a generally centrally positioned, vertically oriented pipe extending from a bottom of the tank to about a top of the tank. A flange is positioned about mid-way of the pipe for separating an upper section of the pipe from a lower section. A water return line is coupled to the pipe above the flange and a water extraction line is connected to the pipe below the flange. A plurality of circumferentially spaced cool water conduits are connected to the pipe generally adjacent the bottom of the tank and a plurality of circumferentially spaced warm water conduits are connected to the pipe generally adjacent the top of the tank.
    Type: Grant
    Filed: September 28, 1993
    Date of Patent: January 17, 1995
    Assignee: Dirrecktor TES Systems, Inc.
    Inventor: Anthony Mather
  • Patent number: 5379833
    Abstract: A heat exchanger for a refrigeration circuit for condensing gaseous refrigerant and incorporating an integral refrigerant subcooler. The heat exchanger utilizes an oversized header communicating with the heat exchanger coils of sufficient volume to serve as a reservoir for condensed refrigerant eliminating the need for a separate receiver receptacle. Refrigerant subcooling occurs at the lower region of the receiver whereby the subcooler is automatically provided with liquified refrigerant from the condensing portion of the heat exchanger.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: January 10, 1995
    Assignee: Koolant Koolers, Inc.
    Inventor: Douglas H. Mathews
  • Patent number: 5379832
    Abstract: The heat exchanger is made up of a shell having a coaxial tubular outer and inner wall with end plates attached thereto to enclose a tubular shell cavity provided with an inlet and outlet for a first fluid. Within the shell cavity is a spiral coil of tubing through which flows a second fluid. The coil is wound helically about the axis of the shell and sized to fit the inner and outer walls with limited radial clearance. The coils are axially spaced from one another to define a spiral flow path within the shell cavity for the fluids to first flow. The radial and axial clearance establish a spiral flow path and an axial flow path which are relatively sized to cause the first fluid to travel in a spiral motion, thereby enhancing heat transfer between the first and second fluids. Also, an enclosed central receiver, include communication with the shell cavity, may be formed within the inner tubular wall which serves as a fluid accumulator or reservoir.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: January 10, 1995
    Assignee: Aqua Systems, Inc.
    Inventor: Jack C. Dempsey
  • Patent number: 5379830
    Abstract: A heat pipe includes a pipe, a bottom plate, and a cap plate. The cap plate includes a vertical aperture extending so as to be penetrated vertically and a horizontal aperture extending from the side surface to the vertical aperture. A sleeve having a through hole extending vertically is attached to the vertical aperture of the cap plate. A working fluid serving as heat carrier repeating evaporation and condensation is introduced into the pipe from the through hole of the sleeve. The sleeve is deformed by impact externally applied through the horizontal aperture, so that the through hole is closed. A radiating device includes a base block having a plurality of guide grooves on the upper surface, and a plurality of heat pipes having the bottom portions fitted to be secured into the guide groove. The structure of the heat pipes is the same as that of the above-described heat pipe.
    Type: Grant
    Filed: July 8, 1993
    Date of Patent: January 10, 1995
    Assignee: Itoh Research & Development Laboratory Co., Ltd.
    Inventor: Akira Itoh
  • Patent number: 5379610
    Abstract: Cooling liquid flowing through cooling-liquid passages cools in heat-transmission manner an inner layer on an inner surface of an impermeable intermediate layer and is directed through a piping to an interface between the intermediate and outer layers, whereby the porous outer layer is cooled by latent heat generated by evaporation of the cooling liquid infiltrated into the porous outer layer.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: January 10, 1995
    Assignee: Ishikawajima-Harima Jukogyo Kabushiki Kaisha
    Inventors: Akira Sakurai, Masahiro Shiotsu, Toshikazu Yano, Masao Ochi, Toshihiro Sugawara
  • Patent number: 5377489
    Abstract: A steam turbine system including a low pressure (LP) turbine has a plurality of moisture extraction points at which a steam-water mixture is extracted and passed through a respective one of a corresponding plurality of heat exchangers. Each exchanger passes the steam-water mixture in heat exchange relationship with feedwater in a feedwater conduit. A low pressure and low temperature final stage extraction point on the steam turbine is coupled to a condenser, and water collected at the condenser is directed into the feedwater conduit. The system separates at least some of the steam in the steam-water mixture from the final stage extraction point and passes this steam in heat exchange relationship with water in the feedwater conduit.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: January 3, 1995
    Assignee: Westinghouse Electric Corporation
    Inventors: George J. Silvestri, Jr., Paul W. Viscovich
  • Patent number: 5377745
    Abstract: A cooling device includes a fin unit with an upper side to which a fan unit is mounted and an underside to which a central processing unit is mounted. The fin unit includes a base plate and a plurality of fins projecting upwardly from an upper side of the base plate and extending parallel to a perimeter of the base plate thereby forming a frame-like structure with a second perimeter and defining a space therein. Four ledges are defined between the perimeter of the base plate and the perimeter of the fins. At least one hook member is formed on each of two opposed ledges and a slot is formed in the ledge adjacent to each hook member. A plurality of second fins project upwardly from the upper side of the base plate in the space defined by the first-mentioned fins, each second fin having a height less than that of the first fin for mounting the fan unit in the space above the second fins.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: January 3, 1995
    Inventor: Hsin M. Hsieh
  • Patent number: 5375649
    Abstract: Ventilation device with a heat exchange element, preferably for arrangement in an outer wall (13) of premises which are to be ventilated with balanced volumes of ambient air (15). The ventilation device comprises a pair of air flow passages (23A,23B) each including two separate ventilation tubes (16,19) aligned in the direction of air flow, with generally identical heat exchange elements (18,22) at the ends thereof. A fan (24A,24B) is located centrally between the two heat exchange elements in each passage.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: December 27, 1994
    Inventors: Trond Nilsen, Erling Normann
  • Patent number: 5372016
    Abstract: An improved ground source heat pump system wherein the subterranean piping installation comprises modular heat exchange units. Each modular heat exchange unit comprises a plurality of parallel secondary or branch conduits. The use of multiple parallel secondary conduits significantly increases the heat exchange capacity of the system. Because of the increased efficiency of such a system, less piping is required, which in turn reduces the cost of labor and materials to install such a system and the area of land mass required to contain it. Moreover, because the heat exchange units are modular, they can be prefabricated at a remote site and then conveniently transported to construction site and installed much more quickly than the extended lengths of conventional piping.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: December 13, 1994
    Assignee: Climate Master, Inc.
    Inventor: John P. Rawlings
  • Patent number: 5372185
    Abstract: A system for heating two independent water supplies having a water storage tank adapted to contain a first, potable water supply and a coiled heat exchange tube mounted within the tank to contain and conduct a second, non-potable water supply. The tank has a top, bottom, wall, and flue communicating between the top and bottom. The tube is in communication with the exterior of the tank and with a circulatory space heating system. The tube has a double wall to protect against the mixing of the potable and non-potable water supplies, and the ends of the tube terminate at the surface of the water storage tank at a dielectric fitting which maintains electrical isolation between dissimilar metals otherwise exposed to the water.
    Type: Grant
    Filed: June 29, 1993
    Date of Patent: December 13, 1994
    Assignee: Bradford-White Corporation
    Inventor: Eric M. Lannes