Patents Examined by Alexei Bykhovski
  • Patent number: 11564658
    Abstract: The present disclosure relates to an ultrasound elastography system and method. The system may include a transmitting/receiving unit which transmits ultrasound pulses to a target and receives ultrasound echoes from the target to obtain the ultrasound echo signals; an imaging unit which processes the ultrasound echo signals and displays the obtained image; and an analysis unit which detects a region of interest and a shell region selected by an operator in the image, calculate elasticity parameters in a reference region and the shell region respectively, and analyzes the elasticity parameters to obtain an analysis result.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 31, 2023
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Shuangshuang Li, Jianqiao Zhou
  • Patent number: 11559276
    Abstract: The invention provides an ultrasound system including an ultrasound transducer array and a processor. The ultrasound transducer array comprises a plurality of transducer elements adapted to conform with a subjects body. Further, at least two ultrasound transducer elements of the plurality of transducer elements are adapted to acquire a plurality of ultrasound signals from a region of interest at different orientations relative to said region of interest. The processor is adapted to receive ultrasound signals acquired by the ultrasound transducer array. The processor is further adapted to partition the plurality of ultrasound signals according to a signal depth and, for each ultrasound signal partition, calculate a Doppler power. For each ultrasound signal, the processor identifies a depth of a fetal heartbeat based on the Doppler power of each ultrasound signal partition and identifies a fetal heart region based on the identified fetal heartbeat and a location of the at least two ultrasound transducers.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: January 24, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Christoph Hamelmann, Alexander Franciscus Kolen
  • Patent number: 11559216
    Abstract: This relates to one or more integrated photodiodes on a back surface of a PPG device. The one or more integrated photodiodes can reduce the gap between one or more windows and the active area of the photodiode(s) to increase the PPG signal strength without affecting the depth of light penetration into skin tissue. In some examples, the photodiode stackup can contact the surface of the windows. In some examples, the photodiode stackups can exclude a separate substrate. In some examples, the photodiode stackup can be deposited on the inner surface of the windows opposite the outer surface of the device. In some examples, the photodiode stackup can be deposited on the back surface and/or outer surface of the device. In this manner, PPG sensors can be included in the device without the need for extra layers and measurement accuracy can be improved due to lower light loss.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: January 24, 2023
    Assignee: Apple Inc.
    Inventors: Arpit Mehta, Guocheng Shao, Tobias J. Harrison-Noonan
  • Patent number: 11559272
    Abstract: Methods and systems are provided for cardiac computed tomography imaging. In one embodiment, a method comprises reconstructing an image from projection data acquired during a scan with a reconstruction time determined based on a model relating a timing of an event to be imaged to a heart rate measured during the scan. In this way, the timing of a reconstruction may be consistently applied for a series of reconstructions, thereby inherently registering the reconstructions.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 24, 2023
    Assignee: General Electric Company
    Inventors: John Irvin Jackson, Mark Edward Woodford
  • Patent number: 11559283
    Abstract: An ultrasound diagnosis apparatus including: an ultrasound probe having a transducer array; and a processor configured to: perform transmission and reception of an ultrasonic beam from the transducer array toward a subject, into which contrast media including microbubbles is introduced; image a reception signal output from the transducer array to generate an ultrasound image of the subject; acquire trajectories of the microbubbles in a one cross section of the subject by tracking movement of the microbubbles based on the ultrasound image corresponding to the one cross section of the subject; detect, as a feature point, a trajectory, in which a distance between a start point and an end point in a prescribed time range is less than a prescribed value, among the trajectories of the microbubbles; and display the ultrasound image, the acquired trajectories and the detected feature point on the display unit.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: January 24, 2023
    Assignee: FUJIFILM Corporation
    Inventors: Hiroaki Yamamoto, Tomoki Inoue
  • Patent number: 11547390
    Abstract: Information relevant to a state of a tissue in a subject (state information) is provided with technology reducing the amount of memory and computation necessary at the time of extracting the information. An ultrasonic wave is transmitted towards a subject, a transmission wave transmitted through the subject or a reflection wave reflected on the subject is received. A reception signal is generated on the basis of the transmission wave or the reflection wave. A tissue region candidate, of a region indicating a tissue of the subject, is set on the basis of the reception signal. State information, which is information relevant to a state of the tissue in the tissue region candidate, is calculated on the basis of the reception signal and the tissue region candidate. An ultrasonic image reflecting the state information is generated on the basis of the state information and displayed.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: January 10, 2023
    Assignee: FUJIFILM HEALTHCARE CORPORATION
    Inventors: Kazuhiro Yamanaka, Kenichi Kawabata, Takahide Terada, Yushi Tsubota, Wenjing Wu
  • Patent number: 11534139
    Abstract: An ultrasonic diagnostic device includes a probe configured to transmit an ultrasonic wave to a subject and to receive the ultrasonic wave reflected by the subject; an image processor configured to convert ultrasonic image data based on the ultrasonic wave received by the probe, into digital data; a main body configured to output the digital data output from the image processor; and a connector configured to electrically connect and disconnect the image processor with respect to the main body.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: December 27, 2022
    Assignee: SOCIONEXT INC.
    Inventors: Naoto Adachi, Naoto Yoneda, Mari Kobayashi, Masaya Tamamura, Amane Inoue
  • Patent number: 11524182
    Abstract: Disclosed herein is a non-invasive treatment system using intermedium, and an exemplary treatment system is configured to output high-intensity focused ultrasound to remove bone tissue, inject an acoustically-transparent medium into a part where the bone tissue is removed to generate an intermedium, and output therapeutic ultrasound that passes through the intermedium. Accordingly, the bone tissue is removed in a non-invasive way using high-intensity focused ultrasound, and the intermedium is generated at the bone tissue removed site, to increase the penetration of therapeutic ultrasound or generate ultrasound itself, thereby improving an ultrasound treatment effect while minimizing the side effect (for example, infection of dura mater) of invasive surgery methods.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: December 13, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Byung Chul Lee, Hyung Min Kim, Ki Joo Pahk
  • Patent number: 11517286
    Abstract: An ultrasonic probe according to an embodiment comprises an ultrasonic-transducer element array, an offset and an exterior member. The ultrasonic-transducer element array is formed by a plurality of ultrasonic transducer elements. The offset is provide on an ultrasonic-transmitting and receiving side of the ultrasonic-transducer element array and includes a contact portion with a subject. The exterior member supports the offset. The offset has at least a first region that is formed by a curved surface having a first curvature and arranged in the middle of the contact portion and a second region that is formed by a curved surface having a second curvature greater than the first curvature and arranged on an edge of the contact portion.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: December 6, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Tomohiro Sato, Takashi Takeuchi, Hiroyuki Shikata, Kengo Okada
  • Patent number: 11510645
    Abstract: Provided is an ultrasound imaging apparatus for predicting fetal growth rate, including: an ultrasound probe configured to transmit ultrasound signals to a fetus and receive ultrasound echo signals reflected from the fetus; a user inputter configured to receive pregnancy information regarding a patient from a user; a communicator configured to receive, from a cloud server, fetal biometric data related to the pregnancy information regarding the patient from among fetal biometric data prestored and accumulated in the cloud server; and a controller configured to generate an ultrasound image of the fetus by using the ultrasound echo signals, measure a size of a body part of the fetus on the ultrasound image, and predict the fetal growth rate based on the measured size of the body part of the fetus and the fetal biometric data received from the cloud server.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 29, 2022
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Hoki Hong, Daebong Park, Sungnam Park, Jaeho Lee, Jeong Cho, Soonjae Hong
  • Patent number: 11504089
    Abstract: An adaptor for adjusting electrical signals propagated along an electrically-conductive path between a drive unit and a catheter of an intravascular ultrasound imaging system includes a catheter connector disposed along a first end of a housing and configured to receive the catheter. A drive-unit connector is disposed along a second end of the housing and is configured to couple the adaptor to the drive unit. A catheter-conductor interface electrically-couples to a transducer conductor of the catheter. A drive-unit-conductor interface electrically-couples to an electrical conductor of the drive unit. An adaptor conductor electrically-couples the catheter-conductor interface to the drive-unit-conductor interface. A tuning element is electrically-coupled to the adaptor conductor and is configured to adjust electrical signals propagating along the adaptor conductor based, at least in part, on an operational frequency of a transducer disposed in the catheter.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: November 22, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Peter Thornton, Jr.
  • Patent number: 11490867
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination. The device (1) comprises a model generator (10) configured to generate a three-dimensional model (3DM) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS), based on a partial segmentation of the imaged vascular vessel tree (VVT). Further, the device comprises an image processor (20) configured to calculate a blood flow (Q) through the stenosed vessel segment (SVS) based on an analysis of a time-series of X-ray images of the vascular vessel tree (VVT). Still further, the device comprises a fractional-flow-reserve determiner (30) configured to determine a fractional flow reserve (FFR) based on the three-dimensional model (3DM) and the calculated blood flow.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: November 8, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hanno Heyke Homann, Michael Grass, Raoul Florent, Holger Schmitt, Odile Bonnefous, Hannes Nickisch
  • Patent number: 11471210
    Abstract: Systems and methods are disclosed for treating back pain associated with a vertebral body of a patient. The system may include an external energy source configured to be positioned at a location external to the body of the patient, a linear configured to drive translation of the external source in one or more axes, a computer coupled to the external source and linear drive and programming executable on said computer for determining a target treatment site within or near the vertebral body based on acquired imaging data, positioning a focal point of the external energy source to substantially coincide with the target treatment site, and delivering a treatment dose of therapeutic energy at said target treatment site, wherein the treatment dose is configured to modulate a nerve within or near the vertebral body.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 18, 2022
    Assignee: Relievant Medsystems, Inc.
    Inventors: Richard C Pellegrino, Rex Peters
  • Patent number: 11471240
    Abstract: A system for dynamic localization of medical instruments includes an ultrasound imaging system (110) configured to image a volume where one or more medical instruments are deployed. A registration module (136) registers two images of the one or more medical instruments to compute a transform between the two images, the two images being separated in time. A planning module (142) is configured to have positions of the volume and the one or more medical instruments updated based on the transform and, in turn, update a treatment plan in accordance with the updated positions such that changes in the volume and positions of the one or more medical instruments are accounted for in the updated plan.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: October 18, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ehsan Dehghan Marvast, Shyam Bharat, Jochen Kruecker
  • Patent number: 11464480
    Abstract: An intravascular imaging device is provided. In one embodiment, the intravascular imaging device includes a flexible elongate member sized and shaped for insertion into a vessel of a patient, the flexible elongate member having a proximal portion and a distal portion; a conductor extending between the proximal and distal portions of the flexible elongate member; an imaging assembly disposed at the distal portion of the flexible elongate member, the imaging assembly including: a flex circuit including a body and a tab extending therefrom, the tab having a conductive portion coupled to the conductor; and a support member around which the flex circuit is disposed, the support member including a shelf on which tab is positioned.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Maritess Minas, Princeton Saroha, Jeremy Stigall, David Kenneth Wrolstad
  • Patent number: 11464490
    Abstract: A method for providing real-time feedback and semantic-rich guidance on ultrasound image quality is performed by a processor in an ultrasound system. The method includes receiving an ultrasound image and classifying the ultrasound image into one or more categories based on image features. The classifying creates a classified image. The method also includes determining whether the classified image provides an acceptable representation of a target organ. In response to determining that the classified image does not provide an acceptable representation of the target organ, the method includes selecting operator guidance corresponding to the one or more category; presenting via a display and/or audible sound, the selected operator guidance; and receiving additional ultrasound images. The method further includes calculating a result based on the classified image in response to determining that the classified image provides an acceptable representation of the target organ.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 11, 2022
    Assignee: Verathon Inc.
    Inventors: Si Luo, Dave Scott
  • Patent number: 11464486
    Abstract: A wireless handheld ultrasound system an ultrasound front end to transmit ultrasonic waves into a subject and convert received ultrasonic echoes into digital data; an image processor coupled to the ultrasound front end to convert the digital data into an image; and a power section coupled to the ultrasound front end and the image processor. The power section may include a battery; a charging circuit to charge the battery; and a wireless power transducer coupled to the charging circuit to convert wireless power received from an external source into electrical energy for the charging circuit.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 11, 2022
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventor: Glen W. McLaughlin
  • Patent number: 11464497
    Abstract: Apparatuses, systems, and techniques are provided for modular ultrasonic transducers and frame. An ultrasonic transducer array may include a modular ultrasonic transducer array frame. The modular ultrasonic transducer array frame may include mechanisms for the attachment of ultrasonic transducer modules to the ultrasonic transducer array frame. The ultrasonic transducer array may include ultrasonic transducer modules which may include arrays of ultrasonic transducer elements within the ultrasonic transducer modules. Two of the ultrasonic transducer modules may include arrays of ultrasonic transducer elements where the ultrasonic transducer elements are different between the two ultrasonic transducer modules.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: October 11, 2022
    Assignee: Acoustiic inc.
    Inventor: Sean Taffler
  • Patent number: 11457824
    Abstract: An aspect of the disclosure pertains to a wrist-worn device that may be characterized by the following features: an external surface that is not in contact with the user when the wrist-worn device is worn; a force sensor; a PPG sensor disposed on the wrist-worn device; and control logic configured to: (i) generate one or more sensor data samples, each sensor data sample including data that links force data generated by the force sensor when a user presses a against the external surface at a given time with heart rate data obtained from the PPG sensor at the given time; and (ii) calculate an estimate of blood pressure from the one or more sensor data samples. As examples, the force sensor may be a force sensitive touch screen or film, a strain gauge integrating into the device, or a calibrated spring element configured to be pressed by the user.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: October 4, 2022
    Assignee: Fitbit, Inc.
    Inventor: Shelten Gee Jao Yuen
  • Patent number: 11452887
    Abstract: A guide framework for positioning an ultrasonic transducer which emits a focused ultrasound to a target point in carrying out surgery to apply ultrasonic stimulation to a subject's brain, includes a body in a shape of a mask that is laid on the subject's face, and a positioning hole formed through an inner surface and an outer surface of the mask body, the positioning hole into which the ultrasonic transducer is inserted, wherein the inner surface of the mask body is formed to conform a facial contour of the subject, and when the guide framework is laid on the subject's face and the ultrasonic transducer is disposed at the positioning hole, the position of the target point is naturally disposed at a preset stimulation site of the brain. An ultrasonic stimulation device includes an ultrasonic transducer and the guide framework for positioning the ultrasonic transducer.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 27, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyung Min Kim, Inchan Youn, Seung-Jong Kim, Junhyuk Choi, Hongchae Baek, Chan Yul Jung