Patents Examined by Alyssa L Cepluch
  • Patent number: 11332422
    Abstract: Methods for the production of para-xylene include flowing a xylenes-containing stream comprising PX, meta-xylene (MX), and ortho-xylene (OX), to a first crystallization stage. In addition, the methods include lowering a temperature of the xylenes-containing stream to below the eutectic point of the xylenes-containing stream within the first crystallization stage to crystallize at least some of the PX and at least some of one of both of the MX and the OX within the xylenes-containing stream. Further, the methods include separating the xylenes-containing stream into a first crystallization effluent stream and a first filtrate stream.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Robert G. Tinger
  • Patent number: 11247948
    Abstract: Provided herein is a unique process that prepares a saturated hydrocarbon mixture with well-controlled structural characteristics that address the performance requirements driven by the stricter environmental and fuel economy regulations for automotive engine oils. The process allows for the branching characteristics of the hydrocarbon molecules to be controlled so as to consistently provide a composition that has a surprising CCS viscosity at ?35° C. (ASTM D5329) and Noack volatility (ASTM D5800) relationship. The process comprises providing a specific olefinic feedstock, oligomerizing in the presence of a BF3 catalyst, and hydroisomerizing in the presence of a noble-metal impregnated, 10-member ring zeolite catalyst.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: February 15, 2022
    Assignees: Chevron U.S.A. Inc., Novvi LLC
    Inventors: Eduardo Baralt, Cong-Yan Chen, Yalin Hao, Liwenny Ho, Willbe Ho, Ajit Pradhan, Jason Rosalli, Benton Thomas, Jason Wells
  • Patent number: 11236029
    Abstract: A three step synthesis of the 8,12-dihydro-4H-dibenzo[cd,mn]pyren-3a2-ylium cation (triangulenium cation) is effected by cascade cyclization of a tetra-benzyl alcohol precursor in triflic acid solution. This cation is easily observed by NMR and optical spectroscopy. Quenching of the cation into basic solutions or by hydride transfer from triethylsilane provides access to stable dihydro and tetrahydro[3]triangulenes. This route makes several [3]triangulene precursors more readily available for development of new applications in the field of molecular electronics.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 1, 2022
    Assignee: UNIVERSITY OF NEW HAMPSHIRE
    Inventors: Richard Peter Johnson, Carter J. Holt
  • Patent number: 11230515
    Abstract: Methods for removing impurities from a hydrocarbon stream using a guard bed material are disclosed. The guard bed material includes compositions which comprises a zeolite and a mesoporous support or binder. The zeolite has a Constraint Index of less than 3. The mesoporous support or binder comprises a mesoporous metal oxide having a particle diameter of greater than or equal to 20 ?m at 50% of the cumulative pore size distribution (d50), a pore volume of less than 1 cc/g, and an alumina content of greater than 75%, by weight. Also disclosed are processes for producing mono-alkylated aromatic compounds (e.g., ethylbenzene or cumene) using impure feed streams that are treated by the disclosed methods to remove impurities which act as catalyst poisons to downstream alkylation and/or transalkylation catalysts.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 25, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew S. Ide, Doron Levin, Scott J. Weigel, Brett T. Loveless, Jean W. Beeckman
  • Patent number: 11214530
    Abstract: A method for the separation of C4 olefin mixtures using anion-pillared hybrid porous materials as physical adsorbents is provided. The anion-pillared hybrid porous material was constructed by metal ions (M), organic ligand (L), and inorganic anion (A), forming a three-dimensional structure (A-L-M). C4 olefin mixtures contact with hybrid porous materials in certain ways, then each single C4 olefin monomer can be obtained. The pore size of anion-pillared hybrid porous materials and the spatial configurations of the anions within the pores can be fine-tuned and pre-designed. C4 olefins with different size and shape can be efficiently separated by the anion-pillared hybrid porous materials through shape recognition and size-sieving mechanism.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: January 4, 2022
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Huabin Xing, Zhaoqiang Zhang, Qiwei Yang, Qilong Ren, Zongbi Bao
  • Patent number: 11198657
    Abstract: A method for producing a conjugated diene, including a step A of allowing an ?-olefin and formaldehyde to react with each other to produce a ?,?-unsaturated alcohol in the presence of an alcohol; and a step B of subjecting the ?,?-unsaturated alcohol to a dehydration reaction at 135 to 210° C. in the presence of an aqueous solution of an acidic catalyst.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: December 14, 2021
    Assignee: KURARAY CO., LTD.
    Inventors: Yutaka Suzuki, Masaki Shimizu
  • Patent number: 11198660
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently 1, 2, or 3, is contacted with hydrogen in the presence of a hydrogenation catalyst to produce a hydrogenation reaction product comprising at least one methyl-substituted bicyclohexane compound, and the methyl-substituted bicyclohexane compound is then contacted with a dehydrogenation catalyst to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. Decaul, Michael P. Lanci, Wei Tang
  • Patent number: 11148984
    Abstract: The present invention relates to a method of preparing an aromatic compound from acetylene, which includes synthesizing an aromatic compound from an acetylene-containing reactant gas in the presence of a zeolite catalyst for the aromatization of acetylene, and subjecting the zeolite catalyst deactivated by the coke formed in the aromatization of acetylene, to plasma treatment at ambient temperature and pressure so as to selectively remove the external cokes and partial internal coke, thereby regenerating the zeolite catalyst; a method of regenerating the zeolite catalyst used in the aromatization of acetylene by plasma treatment; and a regenerated zeolite catalyst for the aromatization of acetylene, prepared thereof.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 19, 2021
    Assignee: Industry-University Cooperation Foundation Sogang University
    Inventors: Kyoung-Su Ha, MahnJung Kim, Juchan Kim, Jaekwon Jeoung
  • Patent number: 11136277
    Abstract: The present invention relates to a process for the production of ?-springene of formula (I) wherein a compound of formula (II) is heated in the presence of a catalyst.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 5, 2021
    Assignee: DSM IP ASSETS B.V.
    Inventors: Raphael Beumer, Werner Bonrath, Marc-André Mueller, Bettina Wüestenberg
  • Patent number: 11130720
    Abstract: This present disclosure relates to processes for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to a process for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex using mild reaction conditions, namely a combination of low temperatures and elevated pressures using a zeolite with lower number of external acid sites.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 28, 2021
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Deng-Yang Jan, John Q. Chen, Jaime G. Moscoso
  • Patent number: 11130719
    Abstract: This present disclosure relates to processes and apparatuses for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to a process for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: September 28, 2021
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Deng-Yang Jan, John Q. Chen, Edwin P. Boldingh
  • Patent number: 11124713
    Abstract: Relatively low value disulfide oil (DSO) compounds produced as by-products of the mercaptan oxidation (MEROX) processing of refinery hydrocarbon streams, and oxidized disulfide oils (ODSO), are economically converted to value-added light olefins by introducing the DSO and/or ODSO compounds as the feed to a fluidized catalytic cracking (FCC) unit and recovering the light olefins, namely, ethylene and propylene, and in some embodiments a minor amount of butylenes which is then recovered and introduced as the feedstream to a metathesis process for the production and recovery of propylene.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: September 21, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins
  • Patent number: 11111191
    Abstract: A method for preparing hexadecahydropyrene includes the step of carrying out the hydrogenation reaction to hydrocarbon oil containing pyrene compounds in the presence of a hydrogenation catalyst. The pyrene compounds are selected from at least one of pyrene and unsaturated hydrogenation products thereof. The hydrogenation catalyst contains a carrier and an active metal component loaded on the carrier. The active metal component is Pt and/or Pd and the carrier contains a small crystal size Y zeolite, alumina and amorphous silica-alumina. The small crystal size Y zeolite has an average grain diameter of 200-700 nm, a molar ratio of SiO2 to Al2O3 of 40-120, a relative crystallinity of ?95%, and a specific surface area of 900-1,200 m2/g. The pore volume of secondary pores in 1.7-10 nm diameter is more than 50% of the total pore volume.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 7, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC CORP.
    Inventors: Guoquan Sun, Xiangchen Fang, Hongfei Fan, Chunlei Yao, Hui Quan
  • Patent number: 11111193
    Abstract: The invention relates to a process for treatment of a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium, comprising contacting a gas stream comprising methane, an inert gas or oxygen or any combination of two or more of these with the catalyst, wherein said gas stream comprises 0 to 25 vol. % of an alkane containing 2 to 6 carbon atoms and/or alkene containing 2 to 6 carbon atoms.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: September 7, 2021
    Assignee: SHELL OIL COMPANY
    Inventors: Ronald Jan Schoonebeek, Michael Johannes Franciscus Maria Verhaak
  • Patent number: 11103859
    Abstract: A catalyst suitable for the conversion of aromatic hydrocarbons is described. The catalyst comprises UZM-54 zeolite; a mordenite zeolite; a binder comprising alumina, silica, or combinations, thereof; and a metal selected from one or more of: Groups VIB(6) VIIB(7), VIII(8-10) and IVA(14) of the Periodic Table. A process for transalkylation using the catalyst is also described.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 31, 2021
    Assignee: UOP LLC
    Inventors: Eseoghene Jeroro, Deng-Yang Jan, Pelin Cox, Jaime G. Moscoso, Martha Leigh Abrams
  • Patent number: 11104863
    Abstract: The present invention provides method for separating contaminants from a liquid mixture comprising the steps of a) providing a feed of said liquid mixture to be purified, b) adding a separation aid to the liquid mixture to be purified, wherein said separation aid is capable of binding said contaminants and c) supplying a flow of compressed air into said feed after step b) has been performed to provide a feed comprising air. The method further comprises steps d) removing air from said feed comprising air to provide a deaerated feed; and e) supplying said deaerated feed to a separator, and f) separating a phase comprising contaminants and said separation aid from said liquid mixture in said separator, wherein the separation aid added in step b) is insoluble in said liquid mixture at the separation conditions in step f). The present invention further provides a system for separating contaminants from a liquid mixture.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: August 31, 2021
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per-Gustaf Larsson, Ami Karlsson
  • Patent number: 11091413
    Abstract: Method of making BTX compounds including benzene, toluene, and xylene, including feeding heavy reformate to a reactor containing a composite zeolite catalyst. The composite zeolite catalyst includes a mixture of layered mordenite (MOR-L) comprising a layered or rod-type morphology with a layer thickness less than 30 nm and ZSM-5. The MOR-L, the ZSM-5, or both include one or more impregnated metals. The method further includes producing the BTX compounds by simultaneously performing transalkylation and dealkylation of the heavy reformate in the reactor. The composite zeolite catalyst is able to simultaneously catalyze both the transalkylation and dealkylation reactions.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: August 17, 2021
    Assignees: Saudi Arabian Oil Company, Universitat Politecnica De Valencia, Consejo Superior De Investigaciones Cientificas
    Inventors: Raed Hasan Abudawoud, Avelino Corma Canos, M. Teresa Portilla Ovejero, Vicente J. Margarit Benavent, M. Teresa Navarro Villalba, M. Cristina Martinez Sanchez, Ibrahim M. Al-Zahrani
  • Patent number: 11078133
    Abstract: Processes and apparatuses for alkylating aromatic hydrocarbons with an alkylating reagent to produce an alkylated aromatic product are described. The processes and apparatuses use a riser reactor operated at a superficial velocity of 10 m/s to 25 m/s to produce the alkylated aromatic product. In some embodiments, a combination of steam and aromatic hydrocarbon is used to lift the catalyst.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: August 3, 2021
    Assignee: UOP LLC
    Inventors: Gregory B. Kuzmanich, Richard A. Johnson, II, Joseph A. Montalbano, Feng Xu, Robert E. Tsai
  • Patent number: 11078427
    Abstract: A process for producing crude biodiesel from renewable feedstocks (such as fats, oils, and greases) containing unsaponifiable materials; purifying the crude biodiesel through a purification process; recovering a purified biodiesel distillate stream and a less volatile biodiesel residue stream; and further recovering valuable chemicals from the biodiesel residue. Specifically, the present technology relates to the concentration of valuable chemicals in the biodiesel residue product of biodiesel production and the subsequent recovery of these valuable chemicals. The process may further include the conversion of the biodiesel residue into diesel range hydrocarbons using hydrodeoxygenation and the subsequent purification of the hydrocarbon fraction produced thereby.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: August 3, 2021
    Assignee: Renewable Energy Group, Inc.
    Inventors: James Matthew White, David A. Slade, Martin R. Haverly, Ramin Abhari, Cody J. Ellens
  • Patent number: 11066623
    Abstract: The present invention provides method for separating contaminants from a liquid mixture comprising the steps of a) providing a feed of said liquid mixture to be purified, b) adding a separation aid to the liquid mixture to be purified, wherein said separation aid is capable of binding said contaminants and c) supplying a flow of compressed air into said feed after step b) has been performed to provide a feed comprising air. The method further comprises steps d) removing air from said feed comprising air to provide a deaerated feed; and e) supplying said deaerated feed to a separator, and f) separating a phase comprising contaminants and said separation aid from said liquid mixture in said separator, wherein the separation aid added in step b) is insoluble in said liquid mixture at the separation conditions in step f). The present invention further provides a system for separating contaminants from a liquid mixture.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 20, 2021
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per-Gustaf Larsson, Ami Karlsson