Patents Examined by Amanda K Hulbert
  • Patent number: 11975200
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system is configured to receive, for each electrode combination of a plurality of electrode combinations, information representing a signal sensed in response to first electrical stimulation delivered to a patient via a lead, wherein the plurality of electrode combinations comprise different electrode combinations comprising electrode disposed at different positions around a perimeter of the lead implanted in the patient. The system may also be configured to determine, based on the information for each electrode combination of the plurality of electrode combinations, values for a threshold at different locations around the perimeter of the lead and determine, based on the values for the threshold, one or more stimulation parameter values that at least partially define second electrical stimulation deliverable to the patient via the lead.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Rene A. Molina, Christopher L. Pulliam
  • Patent number: 11969597
    Abstract: A blood pressure controlling apparatus includes an acquiring part configured to acquire biological information indicating blood pressure of a subject, a producing part configured to produce a frequency modulated pulse train on the basis of the biological information, and a supplying part configured to supply an electrical current on the basis of the frequency modulated pulse train, to an electrode attached on the subject. The electrical current stimulates baroreceptor afferent nerves of the subject.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: April 30, 2024
    Assignee: Kyushu University, National University Corporation
    Inventors: Keita Saku, Kenji Sunagawa, Takeshi Tohyama, Kazuya Hosokawa, Takafumi Sakamoto
  • Patent number: 11969598
    Abstract: Systems and methods for controlling blood pressure via electrical stimulation of the heart are disclosed. Embodiments may include at least two different stimulation patterns, each configured to reduce blood pressure to a different degree, and may alternate between stimulation patterns based on the need of a patient, for example, alternating between day and night or between periods of strenuous and light activity. Some embodiments may take advantage of a slow baroreflex response that occurs after treatment is stopped, suspending treatment for extended periods, and then resuming treatment before blood pressure levels reach pretreatment values. Embodiments may control blood pressure by controlling atrial pressure and atrial stretch.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 30, 2024
    Assignee: BackBeat Medical, LLC
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 11969592
    Abstract: An implantable medical device (IMD) includes a memory configured to store a set of therapy parameters for subsensory electrical stimulation of a patient; and therapy delivery circuitry configured to deliver the subsensory electrical stimulation to at least one of a sacral nerve or tibial nerve based on the stored set of therapy parameters to provide immediate therapeutic effect caused by the ongoing delivery of the subsensory electrical stimulation to address incontinence, wherein a stimulation intensity of the subsensory electrical stimulation is less than 80% of a stimulation intensity at a sensory threshold, and wherein the patient does not perceive delivery of the subsensory electrical stimulation and perceives delivery of stimulation at the sensory threshold.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Lance Zirpel, Sudha B. Iyer, Xuan K. Wei
  • Patent number: 11964156
    Abstract: A method for treating an unwanted symptom experienced by a person due to migraines or headaches. A set of transcutaneous electrodes are placed on a person's body. A computer processor controls an electrical signal generator in accordance with a stimulation protocol. An electrical signal generator generates a modulated stimulation signal as a high frequency signal in a high frequency range within the range of 80 Hz-200 Hz. The high frequency is adjusted to rove between a first roving frequency and a second roving frequency within the high frequency range of the high frequency carrier signal according to the stimulation protocol for transmitting the high frequency carrier signal to the set of two transcutaneous electrodes for treatment of the person.
    Type: Grant
    Filed: September 26, 2023
    Date of Patent: April 23, 2024
    Inventor: Michael Sasha John
  • Patent number: 11959497
    Abstract: Methods and apparatuses for determining operational parameters of a blood pump comprising a rotor which transports the blood are provided. The change in the behaviour of at least one first and one second operational parameter, independently from each other, of the pump, is determined. A determination of the flow through the pump and/or the difference in pressure across the pump and/or the viscosity of the blood takes into account the determined change in behaviour of the at least two operational parameters. A modelling for a dynamic model of the known quantities may be carried out and an estimation method using a Kalman filter may be used.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 16, 2024
    Assignee: Berlin Heart GmbH
    Inventors: Marcus Granegger, Robert Steingräber, Jonas Fabian Krone
  • Patent number: 11957906
    Abstract: This external stimulus application system is structured so as to comprise: an external stimulus unit that applies an external stimulus to a target area of a user's body; a detection unit that detects changes in a detected area of the user's body during an action of the user; a control unit that causes the external stimulus unit to produce a stimulus if a detected value detected by the detection unit satisfies a prescribed condition; and a storage unit that stores the detected value.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: April 16, 2024
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hidetoshi Tomita, Yuki Kondo, Motoyasu Yasui, Kenji Iida
  • Patent number: 11957909
    Abstract: Disclosed are methods and systems for treating epilepsy by stimulating a main trunk of a vagus nerve, or a left vagus nerve, when the patient has had no seizure or a seizure that is not characterized by cardiac changes such as an increase in heart rate, and stimulating a cardiac branch of a vagus nerve, or a right vagus nerve, when the patient has had a seizure characterized by cardiac changes such as a heart rate increase.
    Type: Grant
    Filed: November 23, 2019
    Date of Patent: April 16, 2024
    Assignee: FLINT HILLS SCIENTIFIC, L.L.C.
    Inventor: Ivan Osorio
  • Patent number: 11950913
    Abstract: An electrocardiogram sensor (400) is provided, comprising an electrode array (100), comprising a substrate (102) interconnecting three or more spaced apart electrodes (101a-c); and a flexible sheet (200) having a greater areal extent than that of the electrode array (100). The flexible sheet (200) is configured to secure the electrodes (101a-c) to the body of a subject.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 9, 2024
    Assignee: SUREPULSE MEDICAL LIMITED
    Inventor: James Carpenter
  • Patent number: 11951313
    Abstract: Devices, systems, and methods deliver implantable medical devices for ventricular-from-atrial (VfA) cardiac therapy. A VfA device may be implanted in the right atrium (RA) with an electrode extending from the right atrium into the left ventricular myocardium. A flexible leed, or another probe, may be advanced to the potential implantation site and used to identify a precise location for implantation of a medical device, such as an electrode, leadlet, lead, or intracardiac device. Some methods may include locating a potential implantation site in the triangle of Koch region in the right atrium of a patient's heart; attaching a fixation sheath to the right-atrial endocardium in the potential implantation site; and implanting the medical device over a guide wire at the potential implantation site. An implantable medical device may include an intracardiac housing and a leadlet, which may be delivered by these methods.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: April 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Andrea J. Asleson, Jean M. Carver, Kathryn Hilpisch
  • Patent number: 11944801
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: April 2, 2024
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Richard L. Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 11944802
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: April 2, 2024
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Richard L. Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 11944820
    Abstract: Neurostimulation of a mixed nerve comprising a plurality of nerve fibre types. An implantable electrode array comprising a plurality of electrodes is positioned proximal to the mixed nerve. An electrical stimulus is delivered from at least one nominal stimulus electrode of the implantable electrode array, in accordance with a set of stimulus parameters. A recording of the electrophysiological response evoked by the electrical stimulus is obtained from at least one nominal recording electrode of the implantable electrode array. The recording is analysed by assessing one or more selected characteristics of the recording, and from the observed selected characteristics a level of recruitment of one or more fibre types recruited by the electrical stimulus is identified. The stimulus parameters are refined in a manner to effect selective recruitment of one or more fibre types relative to other fibre types of the mixed nerve.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: April 2, 2024
    Assignee: Saluda Medical Pty Ltd
    Inventors: John Louis Parker, Gerrit Eduard Gmel
  • Patent number: 11944815
    Abstract: Devices, systems and methods are disclosed that allow a patient to self-treat a medical condition, such as headache, by noninvasive stimulation of a nerve. A system comprises a stimulator having an interface configured to contact an outer skin surface of a patient and an energy source coupled to the interface. The energy source transmits an electrical impulse through the interface transcutaneously through the outer skin surface of the patient to a nerve of the patient such that the nerve is modulated. The system further comprises a mobile device coupled to the stimulator to transmit data to the stimulator. The data includes a therapy regimen to reduce one or more symptoms of a headache in the patient.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: April 2, 2024
    Assignee: ELECTROCORE, INC.
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 11948688
    Abstract: The exemplified methods and systems provide a phase space volumetric object in which the dynamics of a complex, quasi-periodic system, such as the electrical conduction patterns of the heart, or other biophysical-acquired signals of other organs, are represented as an image of a three dimensional volume having both a volumetric structure (e.g., a three dimensional structure) and a color map to which features can be extracted that are indicative the presence and/or absence of pathologies, e.g., ischemia relating to significant coronary arterial disease (CAD). In some embodiments, the phase space volumetric object can be assessed to extract topographic and geometric parameters that are used in models that determine indications of presence or non-presence of significant coronary artery disease.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: April 2, 2024
    Assignee: Analytics for Life Inc.
    Inventors: Sunny Gupta, Timothy William Fawcett Burton, Shyamlal Ramchandani
  • Patent number: 11938333
    Abstract: A wearable medical includes a walking detector module with a motion sensor that is configured to detect when the patient is walking or running. In embodiments, a parameter (referred to herein as a “Bouncy” parameter) is determined from Y-axis acceleration measurements. In some embodiments, the Bouncy parameter is a measurement of the AC component of the Y-axis accelerometer signal. This detection can be used by the medical device to determine how and/or whether to provide treatment to the patient wearing the medical device. For example, when used in a WCD, the walking detector can prevent “false alarms” because a walking patient is generally conscious and not in need of a shock.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: March 26, 2024
    Assignee: West Affum Holdings DAC
    Inventors: Jaeho Kim, Joseph L Sullivan, Robert P. Marx
  • Patent number: 11931590
    Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
  • Patent number: 11925797
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 12, 2024
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Richard L Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 11925796
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 12, 2024
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Richard L. Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 11911189
    Abstract: A method and apparatus for processing a biosignal is disclosed. The apparatus may extract reference points from a waveform of a biosignal, determine a pulse direction of the biosignal based on the extracted reference points, and determine a feature point of the biosignal based on a feature point determining method corresponding to the determined pulse direction of the biosignal.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 27, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changmok Choi, Seungkeun Yoon, Ui Kun Kwon, Sang-Joon Kim