Patents Examined by Andre Allen
  • Patent number: 9795130
    Abstract: A waterfowl decoy apparatus comprising a vertical shaft, a hinging mechanism that is movable between a deployed position and a closed position mechanically connected to the vertical shaft, a windsock support structural member having a first end pivotally connected to the hinging mechanism and a windsock slidably connected to the windsock support structural member. When the hinging mechanism is in the deployed position, the windsock support structural member and the windsock is perpendicular to the vertical shaft. When the hinging mechanism is in the closed position, the windsock support structural member and windsock is parallel to the vertical shaft.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: October 24, 2017
    Inventor: Christopher Holste
  • Patent number: 9797395
    Abstract: Apparatus and methods for detecting pump defects in a pumping system comprising multiple pumps. Each pump includes a pump fluid outlet fluidly connected with the pump fluid outlet of the other pumps. Pump defects are detected by generating information related to fluid pressure fluctuations at each pump fluid outlet and determining harmonic frequencies from the information related to fluid pressure fluctuations for each of the plurality of pumps. The amplitude of the harmonic frequencies is indicative of a defective one of the plurality of pumps.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: October 24, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Carlos Urdaneta, Hao Lam, Rajesh Luharuka
  • Patent number: 9791342
    Abstract: A pressure transducer assembly that uses static pressure compensation to capture low-level dynamic pressures in high temperature environments. In one embodiment, a method comprises receiving, at a first tube, a pressure, wherein the pressure includes a static pressure component and a dynamic pressure component; receiving, at a micro-filter, the pressure; filtering, by the micro-filter, at least a portion of the dynamic pressure component of the pressure; outputting, from the micro-filter, a filtered pressure; receiving, at a first surface of a first sensing element, the pressure; receiving, at a second surface of the first sensing element, the filtered pressure; measuring, by the first sensing element, a difference between the pressure and the filtered pressure, wherein the difference is associated with the dynamic pressure component of the pressure; and outputting, from the first sensing element, a first pressure signal associated with the dynamic pressure component of the pressure.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: October 17, 2017
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Adam Hurst, Alexander A. Ned, Joseph R. VanDeWeert
  • Patent number: 9791338
    Abstract: Disclosed is to a pressure sensor including: a metal diaphragm configured to have a pressure sensing part disposed thereover; a first support configured to be coupled with the metal diaphragm; a first printed circuit board configured to be disposed over the pressure sensing part while being supported to the first support and electrically connected to the pressure sensing part; a connector configured to have a lower portion press-fitted with the first printed circuit board; a second printed circuit board configured to be electrically connected to the first printed circuit board through the connector while being press-fitted with an upper portion of the connector and supported by the connector; a second support configured to be disposed over the second printed circuit board; and a spring electrode configured to have an upper end protruding upward of the second support and have a lower end connected to the second printed circuit board.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: October 17, 2017
    Assignee: MANDO CORPORATION
    Inventor: Gon Jae Lee
  • Patent number: 9791340
    Abstract: During a first cycle of operation, first and second bottom electrodes of a split bottom electrode are electrically connected together. A total capacitance between the split bottom electrode and a top electrode layer is measured to determine the ambient pressure. Accordingly, pressure, e.g., tire pressure, is measured during the first cycle of operation. In a second cycle of operation, the first and second bottom electrodes are electrically disconnected. A first capacitance between the first bottom electrode and top electrode layer and a second capacitance between second bottom electrode and top electrode layer are measured. The difference between the first capacitance and the second capacitance is calculated and compared to a fault indicating capacitance variation to determine if the pressure sensor device is operating normally or malfunctioning. Accordingly, a self-test of the pressure sensor device is performed during the second cycle of operation.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: October 17, 2017
    Assignee: NXP USA, Inc.
    Inventors: Dubravka Bilic, Chad S Dawson
  • Patent number: 9784600
    Abstract: A sensor (1) comprising a casing (2) delimiting an internal volume (3) and having a passage (31) between the internal volume and a first external zone (Z1) external to the casing; a moving part (4) moveable inside the internal volume (3); detector (5) for detecting a movement of the moving part (4) comprising a detection portion (51) extending in the passage (31) and having a groove (52) open to the outside of the detection portion (51), the groove (52) extending between the first external zone (Z1) external to the casing and the internal volume (3) internal to the casing. The sensor (1) comprises first sealing structure (14) positioned around the detection portion (51) inside the passage (31), the first sealing structure (14) being arranged in such a way as to prevent fluid from passing between the internal volume (3) and the first external zone (Z1) via the groove (52).
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 10, 2017
    Assignee: MESSIER-BUGATTI-DOWTY
    Inventor: Gary Ataman
  • Patent number: 9784593
    Abstract: A system for displaying information obtained along the direction of flight of an aircraft is provided. The system includes a vane assembly pivotally mounted to the aircraft having a sensor mounted thereto. The vane comprises a pointing axis configured to continuously align with the direction of the flight path of the aircraft. A display device is operatively connected to the output of the sensor for providing a display along the actual flight path of the aircraft.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 10, 2017
    Inventor: Michael A. Argentieri
  • Patent number: 9777452
    Abstract: A gravity-type pore pressure dynamic penetration device for exploration of shallow-layer seabed soil includes a third drop hammer, a second drop hammer, a first drop hammer, a stable empennage, and a probe rod which are sequentially arranged from top to bottom. A sidewall friction sleeve is arranged outside a probe rod lower cylinder. A friction sleeve sensor is provided on an inner sidewall of the sidewall friction sleeve. A first pore water pressure sensor, a conical tip pressure sensor, a temperature compensation sensor, and an inclinometer sensor are provided in the middle of the probe rod lower cylinder. A second pore water pressure sensor and an acceleration sensor are provided in the middle of a probe rod upper cylinder. The tail portion of the probe rod, that is, the upper portion of the probe rod upper cylinder is connected to the stable empennage.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: October 3, 2017
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Guojun Cai, Jun Lin, Gongqiao Geng
  • Patent number: 9778127
    Abstract: A differential pressure sensor includes: a sensor module including: a sensor case including a port through which a target fluid is to be introduced and a base attached with the port; a sensor configured to detect a physical quantity of the target fluid; a sensor substrate attached with the sensor, the sensor substrate having an outer circumferential surface facing an inner circumferential surface of the base; and a cover configured to press the sensor substrate against the base; and a case body including an electric circuit that is housed therein and electrically connectable to the sensor module, the case body having an open end to which the sensor module is externally attached, in which a sensor module clearance is defined between the outer circumferential surface of the sensor substrate and an inner circumferential surface of the sensor case.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 3, 2017
    Assignee: NAGANO KEIKI CO., LTD.
    Inventors: Takayuki Ite, Daiki Aruga, Hideki Muramatsu
  • Patent number: 9778126
    Abstract: A method, device and system for a gage pressure transducer including the making thereof are provided. In one embodiment, a method includes receiving, at a first diaphragm, a first pressure, wherein the first diaphragm is composed of metal; transferring, from the first diaphragm, to a first sensor, the first pressure using a first oil region, wherein the first oil region is disposed between the first diaphragm and the first sensor; receiving, at the first sensor, the first pressure; measuring, by the first sensor, the first pressure to generate a first pressure signal; and outputting, from the first sensor, to a first header pin, the first pressure signal, wherein the first header pin is electrically coupled to the first sensor using a first conductive glass frit.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 3, 2017
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Anthony D. Kurtz
  • Patent number: 9764947
    Abstract: The voltages output from a low-pressure MEMS sensor are increased by increasing the sensitivity of the sensor. Sensitivity is increased by thinning the diaphragm of the low pressure sensor device. Nonlinearity increased by thinning the diaphragm is reduced by simultaneously creating a cross stiffener on the top side of the diaphragm. An over-etch of the top side further increases sensitivity.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: September 19, 2017
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Jen-Huang Albert Chiou, Shiuh-Hui Steven Chen
  • Patent number: 9766147
    Abstract: Provided is a pressure sensor for detecting the pressure of liquid flowing in a main flow path, including: an introduction flow path to which liquid is introduced from the main flow path; a pressure detection element having a pressure receiving surface and for detecting the pressure of liquid received by the pressure receiving surface in the introduction flow path; a diaphragm provided in a downstream-side end part of the introduction flow path and for transferring the pressure of the liquid to the pressure receiving surface while isolating a contact between the liquid in the introduction flow path and the pressure receiving surface; and a leak sensor for detecting a leakage of liquid into an internal space in communication with the pressure receiving surface.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 19, 2017
    Assignee: SURPASS INDUSTRY CO., LTD.
    Inventor: Masahiro Hasunuma
  • Patent number: 9766146
    Abstract: Systems and methods for an internally switched multiple range transducer are provided. In one embodiment, a method comprises receiving, at a first sensor, a pressure, wherein the first sensor is associated with a first pressure range; measuring, at the first sensor, the pressure to generate a first pressure signal; in response to determining that the first pressure signal is not associated with the first pressure range, activating a second sensor, wherein the second sensor is associated with a second pressure range that is different from the first pressure range; and measuring, at the second sensor, the pressure to generate a second pressure signal.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: September 19, 2017
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Louis DeRosa
  • Patent number: 9758257
    Abstract: Embodiments of air flow sensing systems are provided herein. In some embodiments, one or more sensors are positionable on an aircraft and dimensioned and arranged to measure vector components of airflow velocity having at least one of a transverse or streamwise direction relative to a flight direction of the aircraft. In some embodiments, the one or more sensors are positioned in front of an aircraft wing and distributed as an array of sensors along the span of the aircraft wing.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: September 12, 2017
    Assignee: SUNLIGHT PHOTONICS INC.
    Inventors: Sergey V. Frolov, Michael Cyrus, Allan J. Bruce, John P. Moussouris
  • Patent number: 9759621
    Abstract: Apparatus and associated methods relate to generating a signal indicative of a differential pressure using a first absolute pressure sensor and a second absolute pressure sensor, each having a positive relation transducer configured to generate an electrical signal that increases in response to increasing pressure and a negative relation transducer configured to generate an electrical signal that decreases in response to increasing pressure. The first and second positive relation transducers of the first and second absolute pressure sensors, respectively, are electrically connected as a first leg of a Wheatstone bridge at a first output node. The first and second negative relation transducers of the first and second absolute pressure sensors, respectively, are electrically connected as a second leg of a Wheatstone bridge at a second output node. Both positive and both negative relation transducers are connected to a first and a second bias node of the Wheatstone bridge, respectively.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 12, 2017
    Assignee: Rosemount Aerospace Inc.
    Inventor: Weibin Zhang
  • Patent number: 9753001
    Abstract: A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one polymer nanofiber deposited on the electrode. The at least one polymer nanofiber provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: September 5, 2017
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Felix A. Miranda, Onoufrios Theofylaktos, Nicholas Pinto, Carl H. Mueller, Javier Santos-Perez, Michael A. Meador
  • Patent number: 9752962
    Abstract: A tire state estimation system is provided for estimating normal force, lateral force and longitudinal forces based on CAN-bus accessible sensor inputs; the normal force estimator generating the normal force estimation from a summation of longitudinal load transfer, lateral load transfer and static normal force using as inputs lateral acceleration, longitudinal acceleration and roll angle derived from the input sensor data; the lateral force estimator estimating lateral force using as inputs measured lateral acceleration, longitudinal acceleration and yaw rate; and the longitudinal force estimator estimating the longitudinal force using as inputs wheel angular speed and drive/brake torque derived from the input sensor data.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 5, 2017
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kanwar Bharat Singh
  • Patent number: 9751541
    Abstract: The present invention discloses a device for evaluating the technical condition of the tread of moving railway vehicles, especially for automated inspection of the loss of roundness of each wheel of circulating railway vehicles, in which a point of measurement is used which generates a signal proportional to rail deformation when a wheel arch passes over said point. Then the comparator system compares the measured signal with a wheel pattern without any roundness defects, which is then transmitted over a data network that associates the wheel identification information, with the wheel defect data generated by the comparator system each time the wheel passes over said measurement area.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: September 5, 2017
    Assignee: Universidad EAFIT
    Inventors: German René Betancur Giraldo, Leonel Francisco Castañeda Heredia, Pedro Fernando Melo
  • Patent number: 9752948
    Abstract: A tunable pressure transducer assembly that comprises a sensing element disposed within a housing, wherein the sensing element is adapted to output a signal substantially indicative of an applied pressure, and a filter assembly also disposed within the housing. In one example embodiment, a method includes receiving, at a filter assembly having a tube, a cap and a cavity defined by a housing, a pressure, wherein the cap is positioned to set a predetermined volume of the cavity and the tube is associated with an application of the pressure to the cavity, wherein the pressure includes a static pressure component and a dynamic pressure component; filtering, by the tube and the cavity, at least a portion of the dynamic pressure component of the pressure to obtain a filtered pressure; outputting, from the filter assembly, the filtered pressure; and wherein the filtered pressure is used to determine the static pressure component of the pressure.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: September 5, 2017
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Louis DeRosa, Robert Gardner
  • Patent number: 9752944
    Abstract: A microelectromechanical sensing structure having a membrane region including a membrane that undergoes deformation as a function of a pressure and a first actuator that is controlled in a first operating mode and a second operating mode, the first actuator being such that, when it operates in the second operating mode, it contacts the membrane region and deforms the membrane in a way different from when it operates in the first operating mode.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: September 5, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Alberto Pagani