Patents Examined by Ann Disarro
  • Patent number: 9023425
    Abstract: Fluidized bed reactor systems for producing high purity silicon-coated particles are disclosed. A vessel has an outer wall, an insulation layer inwardly of the outer wall, at least one heater positioned inwardly of the insulation layer, a removable concentric liner inwardly of the heater, a central inlet nozzle, a plurality of fluidization nozzles, at least one cooling gas nozzle, and at least one product outlet. The system may include a removable concentric sleeve inwardly of the liner. In particular systems the central inlet nozzle is configured to produce a primary gas vertical plume centrally in the reactor chamber to minimize silicon deposition on reactor surfaces.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 5, 2015
    Assignee: REC Silicon Inc
    Inventors: E. Wayne Osborne, Michael V. Spangler, Levi C. Allen, Robert J. Geertsen, Paul E. Ege, Walter J. Stupin, Gerald Zeininger
  • Patent number: 8993050
    Abstract: Method of manufacturing granulates or continuous strips intended for feeding an extrusion machine, formed of a gel comprising at least, as majority elastomer, a styrene thermoplastic elastomer and more than 200 phr of an extender oil, each element of the granulate having a given surface area. The granulate element is sized so that the compactness, of a granulate element, is less than a value decreasing from 1500 m?1 to 375 m?1 and deposited on the surface of said granulates is an anti-tack agent having a value increasing from 2 cm3 to 8 cm3 per m2 of granulate surface area, when the mean size of the particles of said anti-tack agent increases from a value of 1 ?m to 100 ?m.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: March 31, 2015
    Assignees: Michelin Recherche et Technique S.A., Compagnie Generale des Etablissements Michelin
    Inventors: Vincent Abad, Jean-Marie Mus
  • Patent number: 8980370
    Abstract: A method for making a composite carbon nanotube structure includes the following steps. An organic solvent, a polymer, and a carbon nanotube structure are provided. The polymer is dissolved in the organic solvent to obtain a polymer solution. The carbon nanotube film structure is soaked with the polymer solution. A contact angle between the organic solvent and a carbon nanotube is less than 90 degrees.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: March 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Ying-Hui Sun, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8945671
    Abstract: A process for producing coated sodium percarbonate particles by spray application of a sodium sulfate-containing aqueous solution onto sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water, wherein sodium sulfate and sodium percarbonate-containing dust is used to prepare the sodium sulfate-containing aqueous solution.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: February 3, 2015
    Assignee: Evonik Treibacher GmbH
    Inventors: Stefan Leininger, Michael Scheibe, Harald Jakob
  • Patent number: 8936831
    Abstract: The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: January 20, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Jie Li, Yung Y. Liu
  • Patent number: 8900659
    Abstract: The present invention relates to a method of forming copper nanowires with a metallic coating. In a preferred embodiment, the metallic coating is copper. Due to the metal coating, the nanowires become magnetically guidable and chemically stable. As such, the nanowires can be used to form nanomesh. Further, the nanowire and nanomesh of the present invention can be used as transparent electrodes that are used in TV, PC, touch-control, and solar industries.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 2, 2014
    Assignee: National University of Signapore
    Inventors: Hua Chun Zeng, Shengmao Zhang, Yu Chang, Mei Ling Lye
  • Patent number: 8900658
    Abstract: The invention relates to a method for coating metallic effect pigments with silicon oxide, in which alkoxysilane(s) and/or silicon halide(s) in organic solvent are reacted with water in the presence of metallic effect pigments, where the reaction includes at least two steps, where (a) the reaction is carried out with addition of acid in a first step and with addition of base in a second step or where (b) the reaction is carried out with addition of base in a first step and with addition of acid in a second step. The invention further relates to the coated metallic effect pigments producible by way of the method of the invention, and also to the use thereof.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: December 2, 2014
    Assignee: Eckart GmbH
    Inventors: Phu Qui Nguyen, Pär Winkelmann
  • Patent number: 8889226
    Abstract: A method of bonding a metal to a substrate is disclosed herein. The method involves forming a nano-brush on a surface of the substrate, where the nano-brush includes a plurality of nano-wires extending above the substrate surface. In a molten state, the metal is introduced onto the substrate surface, and the metal surrounds the nano-wires. Upon cooling, the metal surrounding the nano-wires solidifies, and during the solidifying, at least a mechanical interlock is formed between the metal and the substrate.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael J. Walker, Bob R. Powell, Jr.
  • Patent number: 8883253
    Abstract: Brominated butadiene polymers are recovered from solution and formed into particles by spraying the solution onto a heated, mechanically agitated bed of seed particles. The droplets contact the seed particles in the bed and form a polymer layer on the outside of the seed particles, thereby enlarging them. The solvent is removed from the droplets after they make contact with seed particles in the bed. The process allows for the simultaneous removal of solvent and formation of somewhat large particles. The process forms at most small amounts of agglomerates and fines.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: November 11, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Douglas C. Greminger, Brian D. Scherzer
  • Patent number: 8883264
    Abstract: Methods for powder coating that include applying a powder coating composition to a substrate via an electrostatic gun. The powder coating composition includes a mixture of two or more materials having different densities, such as a mixture of aerogel particles and fluoropolymer-containing particles. The electrostatic gun can have a high-voltage generator that generates a negative polarity voltage between about 0 KV and about 100 KV during application of the powder coating composition, and the electrostatic gun can have a round spray nozzle. Methods of making fuser members using such powder coating methods, fuser members prepared by such methods, and methods of preparing low gloss images using such fuser members.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: November 11, 2014
    Assignee: Xerox Corporation
    Inventors: Suxia Yang, Qi Zhang, Edward G Zwartz, Yu Qi, Gordon Sisler, David Charles Irving
  • Patent number: 8877287
    Abstract: The present invention relates to a method for manufacturing an anti-reflective coating film. The method for manufacturing an anti-reflective coating film is used to form an anti-reflective coating film exhibiting more improved interface adhesion and scratch resistance and excellent anti-reflective effect by a simple process.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 4, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Heon Kim, Yeong-Rae Chang
  • Patent number: 8871299
    Abstract: A method for producing solid particles having a silica coating, by: dispersing the solid particles to be coated in an aqueous medium to produce a solid particle dispersion, adjusting the pH of the solid particle dispersion by a buffer system to produce a buffered solid particle dispersion, and adding an alkaline silicate solution to the buffered solid particle dispersion to form the silica coating on the solid particles during a coating period. The amounts of buffer system and alkaline silicate solution are selected such that the pH of the buffered solid particle dispersion before the addition of the alkaline silicate solution is at least 7.0 and after completion of the addition of the alkaline silicate solution is at most 11.0.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 28, 2014
    Assignee: Giesecke & Devrient GmbH
    Inventors: Johann Kecht, Stephan Steinlein
  • Patent number: 8871300
    Abstract: A method for making a carbon nanotube based composite is provided. In the method, carriers, solution containing metal ions, and a carboxylic acid solution are mixed to form a mixed solution containing a complex compound. A reducing agent is added into the mixed solution. The metal ions are reduced to metal particles absorbed on the surface of the carriers. The carriers having the metal particles absorbed thereon are purified to obtain the carbon nanotube based composite.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 28, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jian-Wei Guo, Li-Na Zhang, Li Wang, Cheng Wang, Xiang-Ming He, Zhi-Xiang Liu
  • Patent number: 8865265
    Abstract: A process and an apparatus for coating glass by means of a method using at least one or more liquid raw materials which react essentially on at least a portion of the glass substrate forming a coating on it. At least part of the liquid raw materials is atomized to droplets with one or more two-fluid atomizer and at least a fraction of the gas used in the one or more two-fluid atomizers is electrically charged such that at least a fraction of the droplets become electrically charged during or after the atomization. According to the invention the droplets are formed into a separately created electric field.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 21, 2014
    Assignee: Beneq Oy
    Inventors: Markku Rajala, Jorma Keskinen
  • Patent number: 8859035
    Abstract: A method of enhancing the flowability of a powder. The powder is defined by a plurality of particles having an initial level of inter-particle forces between each particle. The method comprises: treating the powder, wherein the level of inter-particle forces between each particle is substantially decreased from the initial level; fluidizing the treated powder; flowing the treated powder into a plasma arc chamber; the plasma arc chamber generating a plasma arc; and the plasma arc chamber operating on the treated powder using the generated plasma arc. Preferably, the inter-particle forces are decreased by coating the particles with an organic surfactant.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 14, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: David Leamon
  • Patent number: 8852680
    Abstract: An asphalt-based sheet roofing material includes capsules on its upper surface. When struck, as by hailstones, the capsules break to release a film forming fluid that spreads over the surface to heal the damage created by the hailstones.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: October 7, 2014
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Keith C. Hong, Gregory F. Jacobs
  • Patent number: 8815338
    Abstract: A method for producing a composite lithium iron phosphate material, which comprises formulating lithium iron phosphate material and purified water at a weight ratio of 1:5-15 into a suspension solution, slowly adjusting the pH value of the suspension solution to 1-3 with phosphoric acid at a concentration of 5-30% in weight, adding an analytically pure soluble chloride in an amount of 0.05-2% based on the molar amount of the lithium iron phosphate material; then adding ammonia water into the solution to adjust the pH value of the solution to 5-6 to obtain hydroxide colloid; drying liquid through spraying to prepare powder, and calcining at 300-450° C. for 3-6 hours under an inert atmosphere; coating the oxide with high conductivity obtained by thermally decomposing the hydroxide colloid on the surface of the lithium iron phosphate material grains; ball milling and sieving the calcined material into a finished product. Also disclosed is the composite lithium iron phosphate material produced by such a method.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: August 26, 2014
    Assignee: Haite Electronic Group Co., Ltd.
    Inventor: Liguang Ye
  • Patent number: 8802190
    Abstract: The disclosure is directed the formulation and application of an anti-corrosion coating system for use on an associated metallic substrate, the coating composition including at least a sacrificial binder and particles of at least one metallic compound comprising a metal which is anodic relative to the metallic substrate. The associated method includes the steps of applying the coating system to the metallic substrate to form an initial coating, heating this initial coating to remove the sacrificial binder and continued heating under controlled atmospheric conditions sufficient to reduce the metallic compound(s) to elemental metal and form a corrosion suppressing alloy coating on the metallic substrate.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 12, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Alan Seid
  • Patent number: 8795766
    Abstract: A sand temperature and flow control system for coating sand using a sand heater, a sand batch mixer, and a continuous mixer. A heater burner combustion blower draws ambient air through a heat exchanger and delivers hot air to a sand heater. A cyclone fan draws hot exhaust air from the sand heater through the heat exchanger. The sand heater is filled with sand and heated to a desired temperature. The heated sand is delivered into the sand batch mixer to form a coating on the sand and the coated sand is delivered to a continuous mixer. The entire process of filling the sand heater with sand, heating the sand, delivering the heated sand into the sand batch mixer, and delivering coated sand from the sand batch mixer to the continuous mixer is a continuous process producing a final product of coated sand continuously.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 5, 2014
    Inventor: Fabian Ros
  • Patent number: 8758854
    Abstract: To obtain a sugar-plum shaped composite particle, a reaction vessel with 300 parts by weight of water placed therein is charged with 30 parts by weight of polymethyl methacraylate resin particles of 2 ?m average particle diameter, and ultrasonic waves are applied to the mixture for 1 minute to obtain a particle dispersion liquid. Subsequently, 15 parts by weight of methyltrimethoxysilane is added to the dispersion liquid to obtain methyltrimethoxysilane hydrolyzates in the dispersion liquid. Thereafter, 10 parts by weight of 1 weight % aqueous ammonia is added thereto and agitated. One minute later, the agitation is discontinued, and the mixture is allowed to stand still for 10 hours to effect maturation. The resultant mixture is filtered and dried to obtain sugar-plum-shaped particles provided on their surfaces with polyorganosiloxane projections.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: June 24, 2014
    Assignee: Nikko Rica Corporation
    Inventors: Masanori Ishii, Keisuke Shiraishi