Patents Examined by Bach Dinh
  • Patent number: 9863904
    Abstract: A method of analyzing a molecule is disclosed. A voltage source is selectively connected to or disconnected from a capacitor using a switch controlled by a reset signal. A charge is stored in a capacitor when the voltage source is connected to the capacitor. The capacitor is discharged through a nanopore in a membrane when the voltage source is disconnected from the capacitor. A duty cycle of the reset signal is determined such that the voltage source and the capacitor is connected for at least a one tenth portion of a reset signal period and disconnected for a remaining portion of the reset signal period, such that a voltage across the nanopore is maintained at a higher level during the portion of the reset signal period in which the connection is maintained than during the remaining portion of the reset signal period in which the connection is not maintained.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 9, 2018
    Assignee: Genia Technologies, Inc.
    Inventors: Roger J. A. Chen, Hui Tian, Bill Maney
  • Patent number: 9857294
    Abstract: Described herein is an approach using inexpensive, disposable chemical sensor probes that can be mounted on a small unmanned aerial vehicles (UAVs) and used to analyze a site (such as one known or suspected to contain explosive residue, spilled material or contaminated soil) without the need for a person to conduct ground operations at the site. The method involves contacting a soil or a surface with a filter paper wetted with a solvent, then subjecting the filter paper to spectroscopy, thus detecting a possible variation indicative of one or more analytes, wherein the solvent is a deep eutectic solvents consisting of a mixture of ethylene glycol and choline chloride.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 2, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel Zabetakis, Scott A. Trammell, Walter J. Dressick, David A. Stenger, Jasenka Verbarg
  • Patent number: 9857293
    Abstract: Described herein is an approach using inexpensive, disposable chemical sensor probes that can be mounted on a small unmanned aerial vehicles (UAVs) and used to analyze a site (such as one known or suspected to contain explosive residue, spilled material or contaminated soil) without the need for a person to conduct ground operations at the site. The method involves contacting a soil or a surface with a filter paper wetted with a solvent, then subjecting the filter paper to voltammetry and/or spectroscopy, thus detecting a possible variation indicative of one or more analytes, wherein the solvent is the deep eutectic solvent consisting of a mixture of ethylene glycol and choline chloride.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 2, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel Zabetakis, Scott A. Trammell, Walter J. Dressick, David A. Stenger, Jasenka Verbarg
  • Patent number: 9847750
    Abstract: A solar energy collection system for converting solar energy to electricity that includes solar arrays mounted on a frame. Each array is set on a tracker head that is supported on a pedestal; each pedestal mounts onto a beam. Elevators pivot the arrays, where each elevator is made up of a shaft with a threaded end coupled to a drive nut. An upper end of each drive nut gimbal mounts to a portion of the tracker head; rotating a lower end of each shaft raises or lowers the drive nut, thereby pivoting each array. The vertical shafts are ganged together and driven by a single motor. Further included with each pedestal are azimuth orientation shafts that also mount to each tracker head. Rotating each orientation shaft adjusts an azimuth of an associated array. The orientation shafts are ganged together and are rotated by a single motor.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: December 19, 2017
    Assignee: BrightLeaf Technologies, Inc.
    Inventors: James P. Crimmins, Peter Young, Douglas Kiesewetter
  • Patent number: 9823216
    Abstract: An NO2 sensor comprises a sensing electrode material that includes a compound consisting essentially of one or more elements selected from the group consisting of Mn, Co, and Fe; an element selected from the group consisting of Si and Ti; and oxygen. In an alternate embodiment, the sensing electrode material includes a compound consisting essentially of one or more elements selected from the group consisting of Mn, Co, and Fe; an element selected from the group consisting of Si and Ti; an element selected from the group consisting of Mg, Al, Li, Na, and K; and oxygen. Sensors made with these sensing electrode materials demonstrate good NO2 sensitivity and reduced sensitivity to cross-interference from NO and NH3.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: November 21, 2017
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Da Yu Wang, David M. Racine, Sheng Yao
  • Patent number: 9823211
    Abstract: Disclosed herein are embodiments of a gas sensor system and methods of analyzing data therefrom. In embodiments, a gas sensor system includes one or more gas preconcentrator modules and one or more gas sensor modules. Each gas preconcentrator module includes a substrate that has a top surface having a gas adsorbent material attached to the top surface and has an electrical heater element for heating each preconcentrator module to release adsorb gases to the sensor. The gas sensor modules and the gas preconcentrator modules are in fluid communication with each other. The gas sensor modules responses are readout in parallel multiple times as the preconcentrators are heated yielding a 2-dimensional gas spectrum. The gas sensor output data is analyzed and compared to a library of known data to analyze the gas composition.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: November 21, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Dan G. Allen
  • Patent number: 9806214
    Abstract: Photovoltaic module device (1) comprising a photovoltaic module (4) and an electrical connection element of a first type (2), characterized in that the connection element of the first type comprises an electrical connector of a first type (24, 25) and a first mechanical link element (23, 26) from the photovoltaic module to the electrical connector of the first type.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 31, 2017
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Eric Pilat, Alexandre Vachez
  • Patent number: 9803136
    Abstract: Photovoltaic cells incorporating the compounds A/M/X compounds as hole transport materials are provide. The A/M/X compounds comprise one or more A moieties, one or more M atoms and one or more X atoms. The A moieties are selected from organic cations and elements from Group 1 of the periodic table, the M atoms are selected from elements from at least one of Groups 3, 4, 5, 13, 14 or 15 of the periodic table, and the X atoms are selected from elements from Group 17 of the periodic table.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 31, 2017
    Assignee: Northwestern University
    Inventors: Mercouri G. Kanatzidis, In Chung, Byunghong Lee, Robert P. H. Chang
  • Patent number: 9797857
    Abstract: Disclosed is an electrochemical probe system and an electrical excitation method, configured in a handheld sorting system, and used to identify the composition of metals and alloys.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 24, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Craig Eldershaw, Saroj Sahu, Sean Garner, Ranjeet Rao, Ashutosh Kole, Vedasri Vedharathinam, Divyaraj Desai, Jessica Louis Baker Rivest, Richard Steele, Martin J. Sheridan
  • Patent number: 9797859
    Abstract: Methods are disclosed for measuring an analyte concentration in a fluidic sample. Such methods allow one to correct and/or compensate for confounding variables such as temperature before providing an analyte concentration. The measurement methods use response information from a test sequence having at least one DC block, where the DC block includes at least one excitation pulse and at least one recovery pulse, and where a closed circuit condition of an electrode system is maintained during the at least one recovery pulse. Information encoded in the at least one recovery pulse is used to correct/compensate for temperature effects on the analyte concentration. Also disclosed are devices, apparatuses and systems incorporating the various measurement methods.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: October 24, 2017
    Assignee: Roche Diabetes Care, Inc.
    Inventor: Scott E. Carpenter
  • Patent number: 9786803
    Abstract: The invention relates to a multi-layer weatherable film structure having an outer layer of a highly weatherable film, a layer having a high thermal deformation temperature, an optional tie layer, and a thin layer of polyolefin or polyamide. The highly weatherable film layer preferably is polyvinylidene fluoride. The polyolefin or polyamide layer is less than 500 microns in thickness, and preferably the whole film structure is less than 750 microns thick. The polyolefinjpolyamide side of the film structure can easily be adhered to many different substances—especially polyolefins and polyamides. This film can be used to provide a highly weatherable protective layer a substrate. One useful application for the film is in a photovoltaic module to protect the back side of the module from weathering and abrasion. The multi-layer film structure can be adhered to a typical polyolefin-based encapsulant layer and used as a backsheet encapsulant in a photovoltaic module.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: October 10, 2017
    Assignee: Arkema Inc.
    Inventors: Amy A. Lefebvre, Gregory S. O'Brien, Samuel Devisme, Anthony Bonnet
  • Patent number: 9784711
    Abstract: A disposable cartridge used in a digital microfluidics system has a bottom layer with first hydrophobic surface, a rigid cover plate with second hydrophobic surface, and a gap there-between. The bottom layer is a flexible film on an uppermost surface of a cartridge accommodation site of a system, attracted to and spread over the uppermost surface by an underpressure. A lower surface of the plate and the flexible bottom layer are sealed to each other. The assembled cartridge is removed from the cartridge accommodation site in one piece and potentially includes samples and processing fluids. The system has a base unit and a cartridge accommodation site with an electrode array of individual electrodes and a central control unit for controlling selection of individual electrodes and for providing these electrodes with individual voltage pulses for manipulating liquid droplets within the gap by electrowetting.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: October 10, 2017
    Assignee: TECAN TRADING AG
    Inventors: Daniel Hoffmeyer, Tiffany Lay, Travis Lee, Marc N. Feiglin, Werner Halg, Anne R. Kopf-Sill
  • Patent number: 9780245
    Abstract: It is an object of the present invention to easily and inexpensively provide a structure of effectively utilizing a light incident on an invalid area of a solar cell. Moreover, it is another object to improve output characteristics of the solar cell by effectively utilizing the light. The gist of the present invention resides in a solar battery module in which plate-like solar cells are held between a light penetrable sheet member on a light receiving surface side and a sheet member on a back surface side, and internal apertures are filled. with a sealing resin, wherein a light diffusion section for diffusely reflecting a light or a light diffusion section of a white color is arranged in an invalid region of each solar cell.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: October 3, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MGMT CO., LTD.
    Inventor: Takahiro Haga
  • Patent number: 9780244
    Abstract: A solar cell module includes a solar cell panel comprising a lower substrate and a plurality of solar cells on the lower substrate; a protective substrate on the solar cell panel; and a buffer part between the solar cell panel and the protective substrate, wherein the lower substrate includes a first lower substrate supporting the solar cell and a second lower substrate disposed along a lateral side of the buffer part.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: October 3, 2017
    Inventor: Do Won Bae
  • Patent number: 9771609
    Abstract: Embodiments of this invention disclose new second generation uric acid-sensing electrodes at least characterized by chemically bonding both uricase and the redox mediator to an electrode. The produced electrodes can be long-term stably used without losing activity. The developed electrode has been successfully applied for the analysis of uric acid (UA) in healthy human urine specimens which exhibits very good analysis accuracy and precision without too much interference. Therefore, the developed electrodes have the potential for clinical applications.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: September 26, 2017
    Assignee: Chung Yuan Christian University
    Inventors: Chean-Yeh Cheng, Chi-Ying Kao
  • Patent number: 9768331
    Abstract: A process is provided for contacting a nanostructured surface. The process may include (a) providing a substrate having a nanostructured material on a surface, (b) passivating the surface on which the nanostructured material is located, (c) screen printing onto the nanostructured surface and (d) firing the screen printing ink at a high temperature. In some embodiments, the nanostructured material compromises silicon. In some embodiments, the nanostructured material includes silicon nanowires. In some embodiments, the nanowires are around 150 nm, 250 nm, or 400 nm in length. In some embodiments, the nanowires have a diameter range between about 30 nm and about 200 nm. In some embodiments, the nanowires are tapered such that the base is larger than the tip. In some embodiments, the nanowires are tapered at an angle of about 1 degree, about 3 degrees, or about 10 degrees. In some embodiments, a high temperature can be approximately 700 C, 750 C, 800 C, or 850 C.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 19, 2017
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Michael Jura, Marcie R. Black, Jeffrey B. Miller, Joanne Yim, Joanne Forziati, Brian P. Murphy, Richard Chleboski
  • Patent number: 9768342
    Abstract: A method for manufacturing a solar cell includes forming a first dielectric layer on a second surface opposite a first surface of a substrate; forming second dielectric layers respectively on an emitter region and the first dielectric layer; forming a third dielectric layer on the second dielectric layer that is positioned on the emitter region; forming a hydrogenated silicon oxide layer on the third dielectric layer; forming a first electrode on the emitter region and connected to the emitter region; and forming a second electrode on the second surface of the substrate and connected to the substrate, wherein the first surface of the substrate has first and second textured surfaces, and wherein the first textured surface includes a plurality of first protrusions and a plurality of first depressions and the second textured surface includes a plurality of second protrusions and a plurality of second depressions.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: September 19, 2017
    Assignee: LG ELECTRONICS INC.
    Inventors: Kyoungsoo Lee, Manhyo Ha
  • Patent number: 9755132
    Abstract: A thermoelectric generation unit according to the present disclosure includes a plurality of thermoelectric generation tubes. Each tube has a flow path defined by its inner peripheral surface, and generates an electromotive force in an axial direction based on a temperature difference between its inner peripheral surface and outer peripheral surface. The thermoelectric generation unit includes a container housing the tubes inside, and a plurality of electrically conductive members providing electrical interconnection for the tubes. The container includes a shell surrounding the tubes and a pair of plates being fixed to the shell and having a plurality of openings, with channels being formed so as to house the electrically conductive members and interconnect at least two of the openings. The respective ends of the tubes are inserted in the openings of the plates. The tubes are connected electrically in series by the electrically conductive members housed in the channels.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 5, 2017
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Kanno, Akihiro Sakai, Kohei Takahashi, Hiromasa Tamaki, Hideo Kusada, Yuka Yamada
  • Patent number: 9754848
    Abstract: Provided is a gas sensor package, including: a gas sensing element; and a substrate on which the gas sensing element is disposed, in which a through hole corresponding to the gas sensing element is formed.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: September 5, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Sung Gon Jun, Jee Heum Paik, Ji Hun Hwang
  • Patent number: 9741878
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 22, 2017
    Assignee: PLANT PV, Inc.
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters