Patents Examined by Ben Lewis
  • Patent number: 9620785
    Abstract: Disclosed is a carbon structure electrode for redox flow batteries, which includes a plurality of spherical macropores formed on a surface of a polymer-derived carbon structure and inside the polymer-derived carbon structure so as to allow electrolyte migration. The carbon structure electrode for redox flow batteries has excellent electrical conductivity and enables cost reduction through a simplified preparation process.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: April 11, 2017
    Assignee: OCI COMPANY LTD.
    Inventors: Jong-Hwa Shon, Byung-Chul Kim, Soo-Whan Kim
  • Patent number: 9616518
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 11, 2017
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 9614222
    Abstract: The present invention is a negative electrode material for a secondary battery with a non-aqueous electrolyte comprising at least a silicon-silicon oxide composite and a carbon coating formed on a surface of the silicon-silicon oxide composite, wherein at least the silicon-silicon oxide composite is doped with lithium, and a ratio I(SiC)/I(Si) of a peak intensity I(SiC) attributable to SiC of 2?=35.8±0.2° to a peak intensity I(Si) attributable to Si of 2?=28.4±0.2° satisfies a relation of I(SiC)/I(Si)?0.03, when x-ray diffraction using Cu-K? ray. As a result, there is provided a negative electrode material for a secondary battery with a non-aqueous electrolyte that is superior in first efficiency and cycle durability to a conventional negative electrode material.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: April 4, 2017
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: Nobuo Kawada
  • Patent number: 9614228
    Abstract: A mixed metal oxide material of tantalumand titanium is provided for use in a fuel cell. The material may comprise between 1 and 20 at. % tantalum. The mixed metal oxide may form the core of a core-shell composite material, used as a catalyst support, in which a catalyst such as platinum forms the shell. The catalyst may be applied as a single monolayer, and is preferably between 6.5 and 9.3 monolayers thick.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: April 4, 2017
    Assignee: Ilika Technologies, Ltd.
    Inventors: Brian Elliott Hayden, Jonathan Conrad Davies, Laura Jane Offin
  • Patent number: 9614211
    Abstract: Provided is a lithium ion battery including a battery can, a battery core received in the battery can, electrolyte filled in the battery can, and a battery cover assembled to the battery can. The battery can or the battery cover is provided with a pressure relief valve, and the pressure relief valve is coupled with a mesh cover defining a number of through holes therein. According to the present invention, when thermal runaway occurs to the lithium ion battery, the pressure relief valve breaks timely. Only gases and electrolyte vapor can pass through the mesh cover. Solid particles cannot pass through the mesh cover. Therefore, ignition of the flammable gases, the electrolyte vapor and the high temperature solid particles in the surrounding air afar from the pressure relief valve is avoided and the safety performance of the lithium ion battery can be improved remarkably.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: April 4, 2017
    Assignees: Ningde Amperex Technology Limited, Dongguan Amperex Technology Limited
    Inventors: Xiao bo Chen, Wei feng Chen, Qing feng Yuan, Ping hua Deng, Quan kun Li, Xue hui Wang, Wei zhong Wu
  • Patent number: 9608246
    Abstract: The present invention provides a resin composition comprising the following resin (a) and filler particles. The use of this composition makes it possible to obtain a separator having excellent heat resistance.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: March 28, 2017
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Junji Suzuki
  • Patent number: 9608278
    Abstract: A mixed metal oxide material of tin and titanium is provided for use in a fuel cell. The mixed metal oxide may form the core of a core-shell composite material, used as a catalyst support, in which a catalyst such as platinum forms the shell. The catalyst may be applied as a single monolayer, or up to 20 monolayers.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: March 28, 2017
    Assignee: Ilika Technologies, Ltd.
    Inventors: Brian Elliott Hayden, Jonathan Conrad Davies, Laura Jane Offin
  • Patent number: 9608241
    Abstract: A battery cell has an electrode plate pack arranged in a casing and provided with a terminal of lead material that extends through a cover opening of the casing cover of the casing. A plastic material cap is placed onto the terminal. The cap has an inner side provided with a circumferentially extending shoulder and an exterior side provided with a circumferentially extending support web. A sealing element is arranged at the inner side of the cap between cap and terminal and is positionally fixed by the circumferentially extending shoulder. The casing cover rests on the circumferentially extending support web. Cap and casing cover are welded to each other. A threaded sleeve of nonferrous metal is embedded in the lead material of the terminal and is aligned with an insertion opening of the cap. The threaded sleeve receives a connecting screw to be passed through the insertion opening.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: March 28, 2017
    Assignee: Hoppecke Batterien GmbH & Co. KG
    Inventor: Heinrich Kesper
  • Patent number: 9601811
    Abstract: Provided is a nonaqueous electrolyte secondary cell including: a case; an element housed in the case, including at least a positive electrode member, a negative electrode member and a separator; and an electrolyte solution poured into the case, wherein when in the state of the case being installed, in the direction perpendicular to the liquid surface of the electrolyte solution, the length between the highest position and the lowest position of the element is represented by L1 and the length between the liquid surface and the lowest position of the element is represented by L2, the ratio calculated with the formula L2/L1×100 is 10% or more and 100% or less.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 21, 2017
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventors: Suguru Kozono, Yasuyuki Abe, Kazushi Nitta, Takaaki Iguchi
  • Patent number: 9601768
    Abstract: The present invention relates to a method of preparing silicon oxide, in which the amounts of silicon and oxygen are appropriately controlled by decreasing the amount of the oxygen from silicon oxide containing a relatively large amount of oxygen, silicon oxide prepared by the method, and a secondary battery including the same. According to the method of preparing silicon oxide, silicon oxide (first silicon oxide) including a relatively large amount of oxygen is heat treated in a reducing atmosphere to decrease the amount of the oxygen in the silicon oxide (first silicon oxide) and to prepare silicon oxide (second silicon oxide) including silicon and oxygen in an appropriate amount (Si:SiO2=1:0.7-0.98), thereby improving capacity and initial efficiency and securing stability and cycle properties (lifetime characteristics) of the secondary battery.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: March 21, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Byung Kyu Lim, Sang Yun Jung, Cheol Hee Park, Han Nah Jeong, Je Young Kim, Yong Ju Lee, Hyun Chul Kim
  • Patent number: 9601758
    Abstract: The invention relates to a negative electrode powder for a lithium-ion rechargeable battery comprising a mixture comprising carbon and SiOx, with 0<x<1, wherein the SiOx consists of a nanometric composite of crystalline SiO2 and amorphous Si. The method for preparing the powder comprises the steps of providing an aqueous solution comprising an anti-agglomeration agent, dispersing a silicon comprising organic compound in the aqueous solution, hydrothermally treating the aqueous solution at a temperature between 90 and 180° C. for a period of 0.5 to 24 h, preferably between 110 and 140° C. for a period of 0.5 to 4 h, thereby forming a suspension of SiO2 and Si in the aqueous solution, evaporating the solution, thereby obtaining a slurry, subjecting the slurry to a coking process whereby a solid residue is formed, calcining the solid residue at a temperature between 500 and 1300° C., preferably between 600 and 1000° C., in a non-oxidizing atmosphere.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 21, 2017
    Assignee: Umicore
    Inventors: Stijn Put, Jean-Sebastien Bridel, Hailei Zhao, Jing Wang
  • Patent number: 9601786
    Abstract: Leakproofing device for a fuel cell intended to be interposed between an Electrodes Membrane Assembly and a polar or bipolar plate of a fuel cell unit, the device consisting of a rigid frame and of a leakproofing seal integral with the frame, the frame furnished with the leakproofing seal defining a plurality of apertures through the device, the apertures being delimited by the leakproofing seal.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: March 21, 2017
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Arnaud Cerceau, Alain Guinebert, Nicolas Jannin, Elisabeth Rossinot, Helene Trouve, Denis Sirac
  • Patent number: 9601766
    Abstract: A negative active material including: a composite particle including a non-carbonaceous nanoparticle that allows lithiation and delithiation of lithium ions, and a (meth)acryl polymer disposed on a surface of the non-carbonaceous nanoparticle; and a crystalline carbonaceous nanosheet.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: March 21, 2017
    Assignees: SAMSUNG ELECTRONICS CO., LTD., RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Minsang Song, Jong Hyeok Park, Zhang Kan, Jeongkuk Shon, Geewoo Jang, Jaeman Choi, Junhwan Ku, Sangmin Ji
  • Patent number: 9595732
    Abstract: A square lithium secondary battery includes a wound body in which a collective sheet in which a positive electrode sheet and a negative electrode sheet overlap each other with a first separator interposed therebetween is wound while a second separator is put inside the collective sheet. An active material mixture layer on one or both surfaces of at least one of the positive electrode sheet and the negative electrode sheet includes a region with a plurality of openings and a region with no opening. At least a bent portion of the collective sheet is covered with the region with the plurality of openings.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: March 14, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Kunio Hosoya, Kunio Kimura
  • Patent number: 9590237
    Abstract: A lithium-ion secondary battery of the present invention comprises a positive electrode including a positive electrode active material composite formed by compositing a lithium silicate-based material and a carbon material, a negative electrode including a negative electrode active material containing a silicon, and an electrolyte. The lithium-ion secondary battery satisfies 0.8<B/A<1.2, where A is irreversible capacity of the positive electrode and B is irreversible capacity of the negative electrode.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: March 7, 2017
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Akira Kojima, Junichi Niwa, Kazuhito Kawasumi, Yuta Ikeuchi, Masanori Morishita, Toshikatsu Kojima, Tetsuo Sakai
  • Patent number: 9583770
    Abstract: High capacity energy storage devices and energy storage device components, and more specifically, to a system and method for fabricating such high capacity energy storage devices and storage device components using processes that form three-dimensional porous structures are provided. In one embodiment, an anode structure for use in a high capacity energy storage device, comprising a conductive collector substrate, a three-dimensional copper-tin-iron porous conductive matrix formed on one or more surfaces of the conductive collector substrate, comprising a plurality of meso-porous structures formed over the conductive current collector, and an anodically active material deposited over the three-dimensional copper-tin-iron porous conductive matrix is provided.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: February 28, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sergey D. Lopatin, Dimitri A. Brevnov, Eric H. Liu, Robert Z. Bachrach, Connie P. Wang
  • Patent number: 9577250
    Abstract: Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: February 21, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Jie Xiao, Dongping Lu, Jun Liu, Jiguang Zhang, Gordon L. Graff
  • Patent number: 9577258
    Abstract: Provided are a method of preparing a cathode active material, a composite cathode active material, and a cathode and a lithium battery containing the composite cathode active material. The method includes mixing a transition metal source and a reducing agent to prepare a cathode active material precursor; and mixing and calcining the cathode active material precursor to prepare a lithium transition metal oxide, wherein a supplied amount of the reducing agent is about 0.003 mole/hr or less with respect to 1 mole/hr of a supplied amount of the transition metal source.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Sang-Woo Cho, Chang-Wook Kim, Ji-Hyun Kim
  • Patent number: 9577236
    Abstract: Disclosed is a battery separator, comprising two fiber regions comprising glass fibers, and a middle fiber region disposed between them comprising larger average diameter fibers and specified amounts of silica, or fine fibers, or both; and processes for making the separator. Also disclosed is a battery separator, comprising a fiber region and either one or two silica-containing region(s) adjacent thereto, each of the regions containing a specified amount of silica; and processes for making the separator. Such separators are useful, e.g., in lead-acid batteries.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: February 21, 2017
    Assignee: Hollingsworth & Vose Company
    Inventors: Akshay Ashirgade, Zhiping Jiang
  • Patent number: 9577241
    Abstract: The present invention relates to an apparatus for preventing overcharge of a battery, and more particularly, to an apparatus for preventing overcharge of a battery, which interrupts power of the battery by inducing a fracture of a busbar to prevent overcharge and to this end, provided is an apparatus for preventing overcharge of a battery, including: a battery cell; an electrode tab extended from both sides of the battery cell and constituted by a negative tab and a positive tab; and a busbar connecting the negative tab and the positive tab, wherein the busbar has a cut part fractured by expansion of the battery cell.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Hyundai Mobis Co., Ltd.
    Inventor: Chang Youl Choi