Patents Examined by Betty Forman
  • Patent number: 9815057
    Abstract: The present technology provides for a microfluidic substrate configured to carry out PCR on a number of polynucleotide-containing samples in parallel. The substrate can be a single-layer substrate in a microfluidic cartridge. Also provided are a method of making a microfluidic cartridge comprising such a substrate. Still further disclosed are a microfluidic valve suitable for use in isolating a PCR chamber in a microfluidic substrate, and a method of making such a valve.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: November 14, 2017
    Assignee: HandyLab, Inc.
    Inventor: Kalyan Handique
  • Patent number: 9803231
    Abstract: Provided herein is technology relating to depositing and/or placing a macromolecule at a desired site for an assay and particularly, but not exclusively, to methods and systems for transporting a macromolecule such as a protein, a nucleic acid, or a protein:nucleic acid complex to an assay site, such as the bottom of a nanopore, a nanowell, or a zero mode waveguide.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 31, 2017
    Assignee: IBIS BIOSCIENCES, INC.
    Inventor: Phillip N. Gray
  • Patent number: 9803233
    Abstract: The present invention relates to a porous substrate comprising at least one active agent entrapped within said pores of said substrate; wherein said pores are capped by at least one nucleic acid sequence; said agent is being released by a triggered reaction of said capping sequence with at least one analyte (biomarker) thereby allowing said capping to be cleaved from said pore. The invention further relates to methods of manufacturing said substrate, uses thereof for the controlled administration of active agents and diagnostic of conditions in a patient.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: October 31, 2017
    Assignee: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD
    Inventors: Itamar Willner, Zhang Zhanxia, Dora Balogh
  • Patent number: 9776182
    Abstract: Devices, systems and methods for making and handling liquid samples are disclosed.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: October 3, 2017
    Assignee: GenCell Biosystems Ltd.
    Inventors: Kieran Curran, David McGuire, Brian Chawke, Paul Fleming, Brian Barrett, Noel Sirr
  • Patent number: 9765389
    Abstract: Systems and methods for performing simultaneous nucleic acid amplification and detection. The systems and methods comprise methods for managing a plurality of protocols in conjunction with directing a sensor array across each of a plurality of reaction chambers. In certain embodiments, the protocols comprise thermocycling profiles and the methods may introduce offsets and duration extensions into the thermocycling profiles to achieve more efficient detection behavior.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: September 19, 2017
    Assignee: Becton, Dickinson and Company
    Inventors: Thomas Catalino Gubatayao, Kalyan Handique, Karthik Ganesan, Daniel M. Drummond
  • Patent number: 9765383
    Abstract: Provided are an apparatus and a method for automatically analyzing biological samples capable of performing the entire processes of dissolving the biological samples in protease and cell lysate to dissolve a nucleic acid in a solution, attaching the nucleic acid to magnetic particles, finally washing the magnetic particle to which the nucleic acid is attached with an organic solvent, drying the magnetic particles using a vacuum pump, eluting the target nucleic acid attached to the magnetic particles in an aqueous solution, adding and mixing the eluted target nucleic acid into a vessel containing a nucleic acid amplification reagent, real-time detecting amplification by irradiating excitation light to a reactor simultaneously with regulating a temperature to perform amplification to measure fluorescence, inactivating an amplified product using an ultraviolet lamp after amplification, obtaining an image through electrophoresis, and analyzing a molecular weight in a single apparatus.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: September 19, 2017
    Assignee: BIONEER CORPORATION
    Inventors: Han Oh Park, Yang Won Lee, Jong-Kab Kim
  • Patent number: 9753007
    Abstract: A method and system are presented for fast and efficient isolation, purification and quantitation of nucleic acids from complex biological samples using isotachophoresis in microchannels. In an embodiment, a sieving medium may be used to enhance selectivity. In another embodiment, PCR-friendly chemistries are used to purify nucleic acids from complex biological samples and yield nucleic acids ready for further analysis including for PCR. In another embodiment, small RNAs from biological samples are extracted, isolated, preconcentrated and quantitated using on-chip ITP with a high efficiency sieving medium. The invention enables fast concentration and separation (takes 10s to 100s of seconds) of nucleic acids with high selectivity and using lower volumes of reagents (order of 10s of ?L to focus less than 1 ?g/?L of nucleic acid).
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 5, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert D. Chambers, Juan G. Santiago, Alexandre Persat, Reto B. Schoch, Mostafa Ronaghi
  • Patent number: 9737892
    Abstract: The invention relates to thermal cycling device comprising: a sample location; a first heating means, wherein advantageously said first heating means is a contact heating means; a second heating means, wherein said second heating means is configured to bring said sample to a second temperature by directing electromagnetic radiation to the first light pipe section end and the light pipe section is configured to direct said electromagnetic radiation through its second end to the sample location, its uses and methods based thereon.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 22, 2017
    Assignee: Curiosity Diagnostics sp. z o.o.
    Inventors: Krzysztof Mellem, Daniel Krzystof Gorzkowski, Seweryn Bajer-Borstyn, Pawel Zawadzki, Piotr Garstecki, Kamil Robert Gewartowski
  • Patent number: 9733252
    Abstract: Methods and systems for plasmonically enhanced bionanoantennas for tagging, tracking, and locating targets of interest at long distances in both day and nighttime conditions. The nanoantennas are used to tag a target of interest and emit a wavelength to impart a unique biometric signature. The nanoantennas are detectable by selectively harvesting and plasmonically enhancing incident light in the visible region, then upconverting that energy through an activated phosphor.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: August 15, 2017
    Assignee: SRC, INC.
    Inventor: Adam J. Lowe
  • Patent number: 9731266
    Abstract: The invention provides systems, devices, methods, and kits for performing an integrated analysis. The integrated analysis can include sample processing, library construction, amplification, and sequencing. The integrated analysis can be performed within one or more modules that are fluidically connected to each other. The one or more modules can be controlled and/or automated by a computer. The integrated analysis can be performed on a tissue sample, a clinical sample, or an environmental sample. The integrated analysis system can have a compact format and return results within a designated period of time.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: August 15, 2017
    Assignee: IntegenX Inc.
    Inventors: Seth Stern, Stevan B. Jovanovich
  • Patent number: 9719134
    Abstract: Disclosed herein are automated systems for performing various biochemical and molecular biological procedures, including processor-controlled execution of protocols involving multiple steps performed in, on, or with liquid microdroplets. Example protocols are the various Polymerase Chain Reaction (PCR) protocols, but the subject systems are not limited to performing PCR protocols. Formation of a microdroplet of the sample for use in the described systems is achieved by bringing an amount of the sample into contact with a hydrophobic milieu, such as a superhydrophobic surface or hydrophobic liquid.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: August 1, 2017
    Assignee: The Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Jeong-Yeol Yoon, David J. You
  • Patent number: 9707554
    Abstract: The present invention relates to a disposable device (100) for amplifying at least one target nucleic acid present in a liquid and biological sample of interest, which consists of a solid body (2), at least one fluid channel (3) connecting an inlet (4), via which all or part of the sample of interest can be drawn up and/or discharged, and an outlet (5), which is itself connected to a means for the drawing up/discharging of the said sample of interest, the fluid channel (3) further comprising from the inlet (4) to the outlet (5): a first compartment (8) containing all or part of the thermostable constituents, a means (15) for mixing the constituents with the sample of interest, a second compartment (9) containing all or part of the non-thermostable constituents, and in addition, at least one zone intended for heating the said sample of interest (6) mixed with the said amplification constituents in order to allow the amplification of the target nucleic acid.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: July 18, 2017
    Assignee: bioMérieux, S.A.
    Inventors: Patrick Broyer, Laurent Drazek, Agnès Dupont Filliard, Michel Guy, Frédéric Pinston, Magaly Ponsard-Fillette, Thierry Kollaroczy
  • Patent number: 9708656
    Abstract: Real time electronic sequencing methods, devices, and systems are described. Arrays of nanoscale electronic elements comprising capacitive devices with one or two electrodes, or arrays of nanoFET devices are used to provide sequence information about a template nucleic acid in a polymerase-template complex bound proximate to the nanoscale electronic elements or to the substrate proximate to the nanoscale electronic element. A sequencing reaction mixture comprising nucleotide analogs having impedance labels, capacitive labels, or conductivity labels is introduced to the array of nanoscale electronic elements comprising capacitive devices or nanoFETs under conditions of polymerase mediated nucleic acid synthesis. The time sequence of incorporation of nucleotide analogs is determined by identifying the types of labels of the nucleotide analogs that are incorporated into the growing strand using measured impedance, conductivity, or capacitance.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: July 18, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jeremiah Hanes, Keith Bjornson
  • Patent number: 9708655
    Abstract: Compositions, systems, and methods for detecting events are provided. A composition can include a nanopore including a first side, a second side, and an aperture extending through the first and second sides; and a permanent tether including head and tail regions and an elongated body disposed therebetween. The head region can be anchored to or adjacent to the first or second side of the nanopore. The elongated body including a reporter region can be movable within the aperture responsive to a first event occurring adjacent to the first side of the nanopore. For example, the reporter region is translationally movable toward the first side responsive to the first event, then toward the second side, then toward the first side responsive to a second event. The first event can include adding a first nucleotide to a polynucleotide. The second event can include adding a second nucleotide to the polynucleotide.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: July 18, 2017
    Assignee: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Jens H. Gundlach
  • Patent number: 9689034
    Abstract: A mechanism is provided for sequencing a biopolymer. The biopolymer is traversed from a first medium to a second medium. The biopolymer includes bases. As the biopolymer traverses from the first medium to the second medium, different forces are measured corresponding to each of the bases. The bases are distinguished from one another according to the different measured forces which are measured for each of the bases.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Venkat K. Balagurusamy, Stanislav Polonsky
  • Patent number: 9689800
    Abstract: Processes for making high multiplex arrays for use in analyzing discrete reactions at ultra high multiplex with reduced optical noise, and increased system flexibility. The high multiplex arrays include substrates having integrated optical components that increase multiplex capability by one or more of increasing density of reaction regions, improving transmission of light to or collection of light from discrete reactions regions. Integrated optical components include reflective optical elements which re-direct illumination light and light emitted from the discrete regions to more efficiently collect emitted light. Particularly preferred applications include single molecule reaction analysis, such as polymerase mediated template dependent nucleic acid synthesis and sequence determination.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: June 27, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Denis Zaccarin, Stephen Turner, Pezhman Monadgemi, Ravi Saxena
  • Patent number: 9678013
    Abstract: Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a substrate and a sensing member formed on a surface of the substrate. The sensing member includes collapsible signal amplifying structures and an area surrounding the collapsible signal amplifying structures that enables self-positioning of droplets exposed thereto toward the collapsible signal amplifying structures.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: June 13, 2017
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Zhiyong Li, Wei Wu, Min Hu, R. Stanley Williams, Ansoon Kim
  • Patent number: 9664702
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: May 30, 2017
    Assignee: Theranos, Inc.
    Inventors: Elizabeth Holmes, Joy Roy
  • Patent number: 9650673
    Abstract: Random arrays of single molecules are provided for carrying out large scale analyzes, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 ?m2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: May 16, 2017
    Assignee: Complete Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac, Brian K. Hauser, George Yeung
  • Patent number: 9632102
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 25, 2017
    Assignee: Theranos, Inc.
    Inventors: Elizabeth Holmes, Sunny Balwani