Patents Examined by Betty Forman
  • Patent number: 8476005
    Abstract: A method of screening one or more cells is described; the method includes: (i) providing one or more cells to a nanoelectromechanical system (NEMS) force sensor; (ii) applying at least one reagent to the one or more cells; and (iii) observing a response of the one or more cells to the reagent with the force sensor, thereby screening the one or more cells.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: July 2, 2013
    Assignee: California Institute of Technology
    Inventors: Blake W. Axelrod, Michael L. Roukes, Jessica L. Arlett
  • Patent number: 8470586
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that regain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: June 25, 2013
    Assignee: Handylab, Inc.
    Inventors: Betty Wu, John S. Althaus, Sundaresh N. Brahmasandra, Kalyan Handique, Nikhil Phadke
  • Patent number: 8465922
    Abstract: Methods and systems for monitoring reactions by observing signals deriving from those reactions, using signal processing that allows differentiation between signals that are otherwise optically overlapping by conventional detection methods. Centroid determination is used to identify signal sources that are presenting confounding overlapping signals due to their physical proximity, and/or to identify discrete signals from different reaction centers.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: June 18, 2013
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: John Eid, Stephen Turner
  • Patent number: 8465967
    Abstract: A method of trapping a charged particle. The method includes providing a planar substrate having a conductive surface thereon, the conductive surface having at least one non-conductive region. The method also includes applying a solution to the conductive surface, the solution comprising at least one charged particle. The method further includes applying a voltage of a threshold level to the conductive surface. The method also includes, in response to the voltage, generating an electrostatic field in the solution adjacent to a boundary between the conductive surface and the non-conductive region. The method also includes setting the threshold level of voltage to result in a strength of the electrostatic field sufficient to prevent the particle from crossing the electrostatic field.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: June 18, 2013
    Assignee: UWM Research Foundation, Inc.
    Inventors: Jorg C. Woehl, Christine A. Carlson
  • Patent number: 8450101
    Abstract: The reaction chip of the present invention has a plurality of recesses 6 constituting a part of a reaction container and a groove constituting a part of a channel formed on at least one of one face of a first base material (resin base material 2) and one face of a second base material (metallic base material) and a notch 15 showing a gradual increase in width and a gradual increase in depth from one face 2d of the base material toward an inner wall surface 6d of the recess is formed on an edge of at least one recess in an extending direction of the groove. One face of the first base material and one face of the second base material are stuck together opposite to each other to form the plurality of reaction containers and the channel.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: May 28, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Sayaka Gomi, Shuichi Akashi, Daisuke Numai, Ryoko Imagawa, Masaaki Chino, Eiji Kawata, Masahiko Amano
  • Patent number: 8445196
    Abstract: Random arrays of single molecules are provided for carrying out large scale analyses, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 ?m2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 21, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje T. Drmanac, Matthew J. Callow, Snezana Drmanac, Brian K. Hauser, George Yeung
  • Patent number: 8445194
    Abstract: Random arrays of single molecules are provided for carrying out large scale analyses, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 ?m2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 21, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac, Brian K. Hauser, George Yeung
  • Patent number: 8445197
    Abstract: Random arrays of single molecules are provided for carrying out large scale analyses, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 ?m2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 21, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac, Brian K. Hauser, George Yeung
  • Patent number: 8440403
    Abstract: An apparatus for investigating a molecule comprising a channel provided in a substrate, a metallic moiety capable of plasmon resonance which is associated with the channel in a position suitable for the electromagnetic field produced by the metallic moiety to interact with a molecule passing therethrough, means to induce a molecule to pass through the channel, means to induce surface plasmon resonance in the metallic moiety; and means to detect interaction between the electromagnetic field produced by the metallic moiety and a molecule passing through the channel. Methods of investigating molecules are also provided.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: May 14, 2013
    Assignee: Base4 Innovation Limited
    Inventor: Cameron Frayling
  • Patent number: 8440397
    Abstract: The present invention is directed to methods and compositions for acquiring nucleotide sequence information of target sequences using adaptors interspersed in target polynucleotides. The sequence information can be new, e.g. sequencing unknown nucleic acids, re-sequencing, or genotyping. The invention preferably includes methods for inserting a plurality of adaptors at spaced locations within a target polynucleotide or a fragment of a polynucleotide. Such adaptors may serve as platforms for interrogating adjacent sequences using various sequencing chemistries, such as those that identify nucleotides by primer extension, probe ligation, and the like. Encompassed in the invention are methods and compositions for the insertion of known adaptor sequences into target sequences, such that there is an interruption of contiguous target sequence with the adaptors. By sequencing both “upstream” and “downstream” of the adaptors, identification of entire target sequences may be accomplished.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 14, 2013
    Assignee: Callida Genomics, Inc.
    Inventors: Radoje Drmanac, Matthew J. Callow, Snezana Drmanac
  • Patent number: 8435738
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: May 7, 2013
    Assignee: Theranos, Inc.
    Inventor: Elizabeth Holmes
  • Patent number: 8431337
    Abstract: There are provided a method and apparatus for detecting nucleic acid using bead and nanopore, and more specifically, a method and apparatus capable of detecting nucleic acid fragments of 70 bps to 300 bps in length by a nanopore detection unit with nanopores of 20 to 120 nm in diameter by attaching a bead to a nucleic acid probe and then detecting the bead attached to nucleic acid not nucleic acid itself. Accordingly, the present invention can detect the nucleic acid fragments using the nanopore detection unit with nanopores of 20 to 120 nm in diameter, even in case where Polymerase Chain Reaction (PCR) products are given as the sample, particularly the PCR products are the nucleic acid fragments of 70 to 300 bps in length.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kui Hyun Kim, Jun Hong Min, Ah Gi Kim, In Ho Lee
  • Patent number: 8431339
    Abstract: The present invention relates to a method for purifying analyte molecules and in particular to a component of this type in which a separation section is used for separating analyte molecules and other constituents of a sample, and in which provision is made of at least one sample chamber for receiving a sample containing the analyte molecules and at least one collecting chamber for receiving the purified analyte molecules. According to the invention, the microfluidic component has at least one integrated receptor device for detecting the presence and/or the concentration of the purified analyte molecules. In accordance with one advantageous development of the present invention, the separation section is formed by an electrophoretic gel filtration section.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 30, 2013
    Assignee: Albert-Ludwigs-Universitat Freiburg
    Inventors: Paul Vulto, Gerald Urban
  • Patent number: 8420313
    Abstract: Multiplexed analysis of molecular structures of samples. A plurality of sample wells is arranged on a substrate. A plurality of electrodes is fabricated on a first side of the substrate. The electrodes are disposed on the side of the substrate exposed to the sample wells. The electrodes include working electrodes, counter electrodes, and optionally include reference electrodes. At least two of the sample wells includes a plurality of working electrodes. The plurality of electrodes is configured to allow electrochemical analysis of the associated sample wells in a multiplexed fashion. The plurality of electrodes is electrically coupled to an interface to a sample analysis system. The interface to the sample analysis system can include contacts or connections. The sample analysis system controls a signal to the electrodes in a multiplexed fashion and performs the electrochemical analysis.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 16, 2013
    Assignee: GeneOhm Sciences, Inc.
    Inventor: Xing Yang
  • Patent number: 8415101
    Abstract: An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to, and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 9, 2013
    Assignee: Roche Nimblegen, Inc.
    Inventor: Harold R. Garner
  • Patent number: 8404440
    Abstract: The present invention provides an integrated lab-on-a-chip device for carrying out a nucleic acid extraction process on a fluid sample containing cells and/or particles, the device comprising: (a) a sample inlet (1) for loading of a fluid sample, (b) a lysis unit (4) for lysis of cells and/or particles present in the fluid sample, (c) a reservoir of lysis fluid (7) for the lysis unit, (d) a nucleic acid extraction unit (5) downstream of the lysis unit, and (e) reservoirs of first washing buffer and eluant fluid (8, 9, 10) for the nucleic acid extraction unit, wherein the device further comprises (f) a mixing unit (6) downstream of the nucleic acid extraction unit, and (g) a source of mixing fluid (11) for the mixing unit. The reservoirs of lysis fluid, first washing buffer and eluant fluid may be provided parallel to one anther so that they may be actuated by a single pump.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: March 26, 2013
    Assignee: Norchip A/S
    Inventors: Lars A. Solli, Anja Gulliksen, Frank Karlsen, Tobias Baier, Rainer Gransee, Thomas Hansen-Hagge, Klaus Stefan Drese, Liv Furuberg
  • Patent number: 8394625
    Abstract: This invention generally relates to an integrated ‘lab-on-a-Pipette’™ which will provide sample-to-answer single cell genetic diagnosis for preimplantation genetic diagnosis (PGD) and other forms of single cell analysis (SCA). SCA is a quickly growing field with substantial impact in prenatal testing, cancer biopsies, diabetes, stem cell research, and our overall understanding of heterogeneity in biology. However, single cell genetic analysis is challenging, inaccurate, and in many cases impossible, due to the small amount of sample (5 pg), and difficulties in handling small sample volumes (50-100 pL). The ‘lab-on-a-pipette’ device integrates a microaspiration tip with microfluidic analysis components to conduct in-situ, real-time single cell genetic diagnosis in a single device. The microaspiration tip extracts and encapsulate a cell into an ultra-low volume plug (˜300 pL).
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 12, 2013
    Inventors: Angelo Gaitas, Amar Basu
  • Patent number: 8389212
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: March 5, 2013
    Assignee: Gamida for Life, B.V.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 8383393
    Abstract: A titer plate and a method for detecting an analyte, and the use thereof are disclosed. According to at least one embodiment of the invention, it is proposed that a plurality of depressions and a biochip of the titer plate sposed adjacent thereto be surrounded by a wall in order to effectively prevent sample contamination when there is a high degree of spatial integration.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Gumbrecht, Peter Paulicka
  • Patent number: 8383337
    Abstract: A method includes binding a probe to an analyte present in a sample, wherein the probe comprises a binder bonded to a metal particle that is capable of releasing metal ions when contacted with a reagent solution. The method includes contacting the metal particle with the reagent solution to release the metal ions, and observing an optical signal from the released metal ions to determine a presence or amount of the analyte in the sample. An associated kit is also provided.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 26, 2013
    Assignee: General Electric Company
    Inventors: Su Lu, Li Zhu, Zhida Pan, Liangliang Qiang, John Yupeng Gui