Patents Examined by Brian K. Talbot
  • Patent number: 11972901
    Abstract: A method to produce a multilayer ceramic electronic component includes forming supports by an ink jet printing method to produce a green multilayer ceramic capacitor. A green ceramic layer and outer electrodes of the multilayer ceramic electronic component are formed by the ink jet printing method while the supports define peripheries of the green ceramic layer and the outer electrodes. When fired, the green multilayer ceramic electronic component is converted to a sintered multilayer ceramic electronic component, and the supports disappear by heating.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: April 30, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Takashi Ohara
  • Patent number: 11971383
    Abstract: The invention relates to a method of patterning a substrate with graphene-based or other electroactive-material-based solution that includes solid-phase particles as hard templates, reducing the solution, and processing the reduced solution to expose the particles. The exposed hard template particles are removed to leave a three-dimensional (3D) porous architecture that can be beneficially used for a variety of applications, including but not limited to bio sensors and supercapacitors. In one example, the exposure is by etching with a CO2 laser. The method can be practiced with scalable MEMS fabrication technologies.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: April 30, 2024
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jonathan Claussen, John Hondred
  • Patent number: 11970290
    Abstract: This disclosure discloses a method comprising: positioning a stencil having an opening onto an aerospace part such that the aerospace part is accessible through the opening; positioning a masking medium onto the aerospace part through the opening; removing the stencil from the aerospace part such that the masking medium remains on the aerospace part and treating the aerospace part with the masking medium thereon.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: April 30, 2024
    Assignee: ORIZON AEROSTRUCTURES, LLC
    Inventors: Mitch Flood, Tyler Barnhart, Richard Paul Newell
  • Patent number: 11961991
    Abstract: Methods, systems, and compositions for the solution-phase deposition of thin films comprising one or more artificial solid-electrolyte interphase (SEI) layers. The thin films can be coated onto the surface of porous components of electrochemical devices, such as solid-state electrolytes employed in rechargeable batteries. The methods and systems provided herein involve exposing the component to be coated to different liquid reagents in sequential processing steps, with optional intervening rinsing and drying steps. Processing may occur in a single reaction chamber or multiple reaction chambers.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 16, 2024
    Assignee: CORESHELL TECHNOLOGIES, INCORPORATED
    Inventors: Sourav Roger Basu, Jonathan Tan
  • Patent number: 11952471
    Abstract: A polymer thin film having stretchability and dielectric properties and a method of forming the same are provided. The method includes forming the polymer thin film having stretchability and dielectric properties depending on a composition of a copolymer using an acrylate-based monomer and a vinyl group monomer.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: SungGap Im, Juyeon Kang, Junhwan Choi
  • Patent number: 11952667
    Abstract: A method for depositing a decorative and/or functional layer on at least a portion of a surface of a finished or semi-finished article made of a non-conductive ceramic material, this deposition method includes the following operations: subjecting the at least a portion of the surface of the article to a carburising or nitriding treatment during which carbon, respectively nitrogen atoms, diffuse in the at least a portion of the surface of the article, then depositing, by galvanic growth of a metallic material, the decorative and/or functional layer on at least a portion of the surface of the article which has undergone the carburising or nitriding treatment.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: April 9, 2024
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Loïc Curchod, Pierry Vuille
  • Patent number: 11955621
    Abstract: A method for lithiation of an electrode includes providing an electrode to be lithiated, providing a piece of lithium metal with predetermined weight attached to a conductive material, attaching the conductive material to a current collector of the electrode to be lithiated or to a metal tab connected to or from the electrode to be lithiated, placing the electrode to be lithiated, the piece of lithium, and the conductive material in a container, and filling the container with an electrolyte containing a lithium salt.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 9, 2024
    Assignee: LICAP TECHNOLOGIES, INC.
    Inventors: Kathleen Qiu, Linda Zhong, Martin Zea, Bae Kyun Kim, Alvaro Perez Rodriguez
  • Patent number: 11946204
    Abstract: The present invention provides a method for printing high opacity images or coatings using solvent based inks comprising hollow polymeric microspheres, wherein the inks do not contain titanium dioxide. The International Agency for Research on Cancer (IARC) has classified titanium dioxide as “possibly carcinogenic to humans,” The method of the present invention allows one to avoid the use of inks that rely on titanium oxide for high opacity, which has become of importance for articles that come into contact with one's mouth, for example, cigarette tipping papers.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: April 2, 2024
    Assignee: Sun Chemical Corporation
    Inventors: Dana Mohr, Jarol Osorio
  • Patent number: 11947232
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: April 2, 2024
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 11932949
    Abstract: Aspects described herein generally relate to a method of coating a metallic surface. The method includes forming a solution including a corrosion inhibitor having one or more thiol moieties and a hydroxide. The metallic surface is coated with the solution to form a treated metallic surface. The treated metallic surface is further coated with an organosilane, an acid, and a metal alkoxide to form a coating system.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 19, 2024
    Assignee: THE BOEING COMPANY
    Inventors: Patrick J. Kinlen, Anthony E. Dillard
  • Patent number: 11935669
    Abstract: A method for dispersing conductive particles includes: forming an electric field between a first electrode and a second electrode of an electrostatic adsorption device including the first electrode including a disposition part having electrostatic diffusivity or conductivity on which particles are disposed and the second electrode including an adsorption part having electrostatic diffusivity or conductivity and facing the disposition part, to cause a blend particle in which the conductive particles each having a particle size smaller than a particle size of an intermediate particle are attached to the intermediate particle and which is disposed on the disposition part, to reciprocate between the disposition part and the adsorption part, and to cause the conductive particles to be adsorbed onto the adsorption part.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: March 19, 2024
    Inventors: Shohei Yamazaki, Hiroyuki Izawa, Toshiyuki Sugimoto
  • Patent number: 11929482
    Abstract: Methods, systems, and compositions for the solution-phase deposition of thin films comprising one or more artificial solid-electrolyte interphase (SEI) layers. The thin films can be coated onto the surface of porous components of electrochemical devices, such as solid-state electrolytes employed in rechargeable batteries. The methods and systems provided herein involve exposing the component to be coated to different liquid reagents in sequential processing steps, with optional intervening rinsing and drying steps. Processing may occur in a single reaction chamber or multiple reaction chambers.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: March 12, 2024
    Assignee: CORESHELL TECHNOLOGIES, INCORPORATED
    Inventors: Sourav Roger Basu, Jonathan Tan
  • Patent number: 11921259
    Abstract: An electronic device includes electrical components in a housing. The components may include optical components such as a display. Protective structures may be used to protect the optical components. The protective structures may include one or more protective transparent layers such as layers of glass or crystalline material such as sapphire. The protective transparent layers may be coated with an oleophobic coating. To enhance coating durability, catalyst may be used to help bond the oleophobic coating. An adhesion promotion layer such as a silicon oxide layer may be deposited on the transparent protective layer. A catalyst layer such as a layer of sodium fluoride may be deposited on the adhesion promotion layer. The oleophobic material may be evaporated or otherwise deposited on the catalyst layer. Heat and moisture may help the oleophobic material form chemical bonds with the adhesion promotion layer, thereby forming a durable oleophobic coating.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: March 5, 2024
    Assignee: Apple Inc.
    Inventors: Manish Mittal, Feng Liu, Kenji Ishizeki, Matthew S. Rogers, Naoto Matsuyuki, Wolf Oetting
  • Patent number: 11911786
    Abstract: The present invention discloses a hydrate energy-storage temperature-control material and a preparation method therefor. The material includes a refrigerant hydrate and a cross-linked polymer. The preparation method comprises the following steps: first, preparing a refrigerant hydrate by using a high-pressure reactor, and conducting grinding, crushing and sieving to obtain hydrate particles; then, uniformly spraying polytetrafluoroethylene suspended ultrafine powder onto the surface of the hydrate particles by using an electrostatic spraying device, and putting the hydrate particles into a plasma instrument to modify polytetrafluoroethylene so as to allow free radicals to be formed on the polytetrafluoroethylene powder surface; finally, subjecting monomers to graft polymerization with the free radicals on the polytetrafluoroethylene surface under the irradiation of a high-pressure mercury lamp of UV lighting system to stabilize the structure of the material, preparing a final product.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: February 27, 2024
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Jiafei Zhao, Yongchen Song, Mingzhao Yang, Hongsheng Dong, Lunxiang Zhang, Quan Shi, Lei Yang, Zheng Ling, Xiang Sun, Yanghui Li, Weiguo Liu
  • Patent number: 11896996
    Abstract: A method of depositing an extrudable substance onto a surface. The method comprises the step of delivering the extrudable substance from a cartridge to a flow-bypass assembly. The method further comprises the step of selectively controlling the flow-bypass assembly to purge air from the extrudable substance before the extrudable substance enters a delivery tube. The method further comprises the step of selectively controlling the flow-bypass assembly to deliver the extrudable substance from the flow-bypass assembly to a valve assembly via the delivery tube. The method further comprises the step of controlling flow of the extrudable substance from the valve assembly to a nozzle.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: February 13, 2024
    Assignee: The Boeing Company
    Inventor: John W. Pringle-Iv
  • Patent number: 11903144
    Abstract: The purpose of the present invention is to provide an electronic component in which a copper electrode and an inorganic substrate exhibit strong adhesion to each other. A method for producing an electronic component according to the present invention comprises: an application step wherein a paste is applied onto an inorganic substrate, which paste contains copper particles, copper oxide particles and/or nickel oxide particles, and inorganic oxide particles having a softening point; a sintering step wherein a sintered body which contains at least copper is formed by means of heating in an inert gas atmosphere at a temperature that is less than the softening point of the inorganic oxide particles but not less than the sintering temperature of the copper particles; and a softening step wherein heating is carried out in an inert gas atmosphere at a temperature that is not less than the softening point of the inorganic oxide particles.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: February 13, 2024
    Assignee: MATERIAL CONCEPT, INC.
    Inventor: Junichi Koike
  • Patent number: 11894543
    Abstract: Methods, systems, and compositions for the solution-phase deposition of thin films comprising one or more artificial solid-electrolyte interphase (SEI) layers. The thin films can be coated onto the surface of porous components of electrochemical devices, such as solid-state electrolytes employed in rechargeable batteries. The methods and systems provided herein involve exposing the component to be coated to different liquid reagents in sequential processing steps, with optional intervening rinsing and drying steps. Processing may occur in a single reaction chamber or multiple reaction chambers.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: February 6, 2024
    Assignee: CORESHELL TECHNOLOGIES, INCORPORATED
    Inventors: Sourav Roger Basu, Jonathan Tan
  • Patent number: 11894542
    Abstract: To lower electrical resistance by increasing the interfacial surface area and the adhesion between a current collector and an active material or an electrolyte, or between the active material and the electrolyte in an all-solid-state battery. In addition, to improve battery performance by eliminating or minimizing residual carbon originating from a binder. A slurry, composed of an electrode active material and a solvent, and a slurry, composed of electrolyte particles and a solvent, can be impacted against a target and thereby attached thereto to form a high-density layer and improve adhesion. Moreover, residual carbon is eliminated or minimized by eliminating or minimizing the content of binders, thereby improving battery performance.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 6, 2024
    Assignee: MTEK-SMART CORPORATION
    Inventor: Masafumi Matsunaga
  • Patent number: 11866616
    Abstract: Provided a wave-absorbing impregnation glue liquid, including: two-component epoxy resin, a solvent, a polyether siloxane, and a carbon powder; wherein a mass ratio of the two-component epoxy resin to the solvent is 1:3˜1:5, a mass ratio of the two-component epoxy resin to the carbon powder is 3:1˜6:1, and a mass fraction of the polyether siloxane in the wave-absorbing impregnation glue liquid is 0.05%˜0.2%. A wave-absorbing impregnation glue liquid, a wave-absorbing honeycomb and their preparation methods are further provided.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: January 9, 2024
    Assignees: LUOYANG INSTITUTE OF CUTTING-EDGE TECHNOLOGY, LUOYANG CUTTING EDGE EQUIPMENT TECHNOLOGY LTD
    Inventors: Ruopeng Liu, Zhiya Zhao, Lu Zhang, Yunxiang Zhang, Yan Hou
  • Patent number: 11835331
    Abstract: The disclosure relates to a method for fabricating a speckle for high temperature deformation measurement of a shaped refractory material. A technical solution includes mixing a hercynite micropowder and a liquid mixing agent in a mass ratio of (3-6):1, and ultrasonically treating to obtain a speckle mixture; polishing a surface of a shaped refractory material to be measured, removing impurities, and spraying the speckle mixture on the surface of the shaped refractory material to be measured with a pneumatic airbrush in a time hood to obtain an uncured speckle; heating the uncured speckle to 60-80° C., keeping for 1-3 h, then heating to 100-120° C., and keeping for 1-3 h to obtain a speckle for high temperature deformation measurement of a shaped refractory material. The fabricated product is suitable for high temperature deformation measurement of a shaped refractory material at 1,600° C.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: December 5, 2023
    Assignee: Wuhan University of Science and Technology
    Inventors: Ao Huang, Shenghao Li, Huazhi Gu, Lvping Fu, Yajie Dai