Patents Examined by Brian M Antiskay
  • Patent number: 11766560
    Abstract: Described herein are microelectrode array devices, and methods of fabrication, assembly and use of the same, to provide highly localized neural recording and/or neural stimulation to a neurological target. The device includes multiple microelectrode elements arranged protruding shafts. The protruding shafts are enclosed within an elongated probe shaft, and can be expanded from their enclosure. The microelectrode elements, and elongated probe shafts, are dimensioned in order to target small volumes of neurons located within the nervous system, such as in the deep brain region. Beneficially, the probe can be used to quickly identify the location of a neurological target, and remain implanted for long-term monitoring and/or stimulation.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 26, 2023
    Inventors: André Mercanzini, Philippe Renaud, Claudio Pollo
  • Patent number: 11751787
    Abstract: An intravascular catheter for peri-vascular nerve activity sensing or measurement includes multiple needles advanced through supported guide tubes (needle guiding elements) which expand with open ends around a central axis to contact the interior surface of the wall of the renal artery or other vessel of a human body allowing the needles to be advanced though the vessel wall into the perivascular space. The system also may include means to limit and/or adjust the depth of penetration of the needles. The catheter also includes structures which provide radial and lateral support to the guide tubes so that the guide tubes open uniformly and maintain their position against the interior surface of the vessel wall as the sharpened needles are advanced to penetrate into the vessel wall.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: September 12, 2023
    Assignee: Ablative Solutions, Inc.
    Inventors: David R. Fischell, Tim A. Fischell, Vartan Ghazarossian, Steven Almany
  • Patent number: 11723550
    Abstract: A system for performing at least one impedance measurement on a biological subject, the system including a measuring device having a first housing including spaced pairs of foot drive and sense electrodes provided in electrical contact with feet of the subject in use, a second housing including spaced pairs of hand drive and sense electrodes provided in electrical contact with hands of the subject in use, at least one signal generator electrically connected to at least one of the drive electrodes to apply a drive signal to the subject, at least one sensor electrically connected to at least one of the sense electrodes to measure a response signal in the subject and a measuring device processor that at least in part controls the at least one signal generator, receives an indication of a measured response signal from the at least one sensor and generates measurement data indicative of at least one measured impedance value and a client device in communication with the measuring device, the client device being ada
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: August 15, 2023
    Inventors: Jack Gerald Cosentino, Tim Essex, Matthew Joseph Miller
  • Patent number: 11717206
    Abstract: An object of the present invention is to provide a bioelectrode, which can stably measure biological information and is suitable for repeated use, and a method of manufacturing the bioelectrode. This object is solved by a bioelectrode comprising a silver coating layer provided on a conductive silicone rubber electrode, wherein the conductive silicone rubber electrode is composed of a silicone rubber containing conductive carbon particles, the silver coating layer is composed of silicone rubber and at least one of agglomerated silver powder and flake-like silver powder, and the silver coating layer has a thickness of 18 ?m to 80 ?m, and, preferably, in which the silver powder contains both the agglomerated silver powder and the flake-like silver powder.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: August 8, 2023
    Inventors: Ryo Futashima, Yasushi Sugiyama, Toru Uda
  • Patent number: 11707219
    Abstract: An electrode sheet is capable of suppressing an influence of noise that is applied on a wire, and a biological signal measuring device uses the electrode sheet. The electrode sheet is provided with a sheet, a biological signal receiving electrode formed at the sheet and exposed from the sheet, a biological signal amplifier formed at the sheet, an interface part for connection to an external biological signal processing unit, a first wire that connects the biological signal receiving electrode and an input part of the biological signal amplifier to each other, and a second wire that connects the interface part and an output part of the biological signal amplifier to each other.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 25, 2023
    Assignee: Osaka University
    Inventors: Tsuyoshi Sekitani, Takafumi Uemura, Teppei Araki, Shusuke Yoshimoto
  • Patent number: 11701044
    Abstract: An electrocardiography patch is provided. A backing includes an elongated strip with a midsection connecting two rounded ends. The midsection tapers in from each end and is narrower than each of the two ends. An electrode is positioned on each end of the backing on a contact surface to capture electrocardiographic signals. A circuit trace electrically is coupled to each of the electrodes in the pair. A battery is provided on an outer surface of the backing opposite the contact surface. Memory is provided on the outer surface of the backing to store data regarding the electrocardiographic signals. A processor is powered by the battery to write the data into the memory.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: July 18, 2023
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: 11701045
    Abstract: An electrocardiography monitor is provided. A sealed housing includes one end wider than an opposite end of the sealed housing. Electronic circuitry is provided within the sealed housing. The electronic circuitry includes an electrographic front end circuit to sense electrocardiographic signals and a micro-controller interfaced to the electrocardiographic front end circuit to sample the electrocardiographic signals. A buzzer within the housing outputs feedback to a wearer of the sealed housing.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: July 18, 2023
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Patent number: 11672459
    Abstract: The present disclosure provides a device with electrodes configured to record electrical activity that are confined to a restricted area, using recorded biological electrical signals to control cursor position in a speech-assistance interface, and using recorded biological signals to detect arousals during sleep.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: June 13, 2023
    Assignee: NEUROVIGIL, INC.
    Inventor: Philip Low
  • Patent number: 11660050
    Abstract: A medical apparatus includes a shaft, an expandable frame, a membrane, a diagnostic electrode, a reference electrode, and a processor. The shaft is configured for insertion into an organ of a patient. The expandable frame is coupled to a distal end of the shaft. The diagnostic electrode, which is disposed on an external surface of the expandable frame, is configured to sense diagnostic signals when in contact with tissue. The reference electrode is disposed on a surface of the expandable frame directly opposite the diagnostic electrode, wherein the reference electrode is electrically insulated from the tissue and is configured to sense interfering signals.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 30, 2023
    Assignee: Biosense Webster (Israel) Ltd
    Inventors: Assaf Govari, Vadim Gliner
  • Patent number: 11660037
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and, to a lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms. Additionally, the monitor recorder includes an ECG sensing circuit that measures raw cutaneous electrical signals and performs signal processing prior to outputting the processed signals for sampling and storage.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: May 30, 2023
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Patent number: 11653869
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: May 23, 2023
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy
  • Patent number: 11648043
    Abstract: A device, system and method for temperature-based lesion formation assessment and mapping functionality using an accessory usable with an over-the-wire balloon catheter. The device may include a first annular element, a plurality of wires coupled to the first annular element, and a second annular element, the plurality of wires passing from the first annular element through the second annular element and into an elongate wire conduit coupled to the second annular element. At least one of the plurality of wires may include at least one temperature sensor and/or at least one mapping electrode. The first annular element coupled to an outer surface of a sheath. As a balloon catheter is advanced out of the sheath lumen, the distal tip of the catheter engages the second annular element and pushes the wires out of the sheath lumen, everting them over the balloon of the catheter.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: May 16, 2023
    Assignee: Medtronic CryoCath LP
    Inventor: Teresa Mihalik
  • Patent number: 11653510
    Abstract: Disclosed are an adhesive transparent electrode and a method of fabricating the same. More particularly, an adhesive transparent electrode according to an embodiment of the present disclosure includes a substrate and an adhesive silicone-based polymer matrix, in which a metal nanowire network is embedded, deposited on the substrate, wherein the adhesive silicone-based polymer matrix includes a silicone-based polymer including a silicone-based polymer base and a silicone-based polymer crosslinker; and a non-ionic surfactant.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: May 16, 2023
    Assignee: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Jin Woo Park, Jin Hoon Kim
  • Patent number: 11627902
    Abstract: The present invention relates to a physiological monitoring device. Some embodiments of the invention allow for long-term monitoring of physiological signals. Further embodiments may also allow for the monitoring of secondary signals such as motion.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: April 18, 2023
    Assignee: iRhythm Technologies, Inc.
    Inventors: Timothy J. Bahney, Hung H. Ho, Shena H. Park, Genaro S. Sepulveda, Mark J. Day, Yuriko Tamura
  • Patent number: 11622707
    Abstract: It is recognized that, because of its unique properties, graphene can serve as an interface with biological cells that communicate by an electrical impulse, or action potential. Responding to a sensed signal can be accomplished by coupling a graphene sensor to a low power digital electronic switch that is activatable by the sensed low power electrical signals. It is further recognized that low power devices such as tunneling diodes and TFETs are suitable for use in such biological applications in conjunction with graphene sensors. While tunneling diodes can be used in diagnostic applications, TFETs, which are three-terminal devices, further permit controlling the voltage on one cell according to signals received by other cells. Thus, by the use of a biological sensor system that includes graphene nanowire sensors coupled to a TFET, charge can be redistributed among different biological cells, potentially with therapeutic effects.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: April 11, 2023
    Inventor: John H Zhang
  • Patent number: 11607164
    Abstract: A brainwave signal collecting device includes a main part and an elastic sleeve having a first opening. The main part is installed on the elastic sleeve, and the elastic sleeve can be positioned by suction on a user's head through the first opening after being pressed. The main part is in contact with the head to collect brainwave signals. The brainwave signal collecting device has an elastic sleeve serving as a flexible piece. When the brainwave signal collecting device is worn, the elastic sleeve can be pressed to partly exhaust the air therein so as to be positioned by suction on the head by the first opening of the elastic sleeve, which can improve the comfort of the head in contact with the elastic sleeve; and the position and angle at which the main part contacts the head can be adjusted through the deformation of the elastic sleeve.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: March 21, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Lin Zhu
  • Patent number: 11607169
    Abstract: Example headsets and electrodes are described herein. Example electrode units described herein include a housing having a cavity defined by an opening in a side of the housing and an electrode. In some such examples, the electrode includes a ring disposed in the opening and an arm, where the arm has a first portion extending outward from the opening away from the housing and a second portion extending from an end of the first portion toward the housing and into the cavity, and the first and second portions connect at a bend.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: March 21, 2023
    Assignee: NIELSEN CONSUMER LLC
    Inventors: Marko Jovanovic, Kashyap Fruitwala, Mohammad Moradi, Batia Bertho, Reimond Bausse, Mehran Mahinpour Tirooni, Yakob Badower
  • Patent number: 11602630
    Abstract: A medical electrode array system comprising a thin-film substrate, a plurality of electrode contacts disposed on the thin-film substrate, and a plurality of traces. The plurality of electrode contacts is configured to provide electrical contact points. The plurality of traces is electrically connected to the plurality of electrode contacts. A electrode contact of the plurality of electrode contacts has a dedicated trace of the plurality of traces that provides electrical connectivity to the electrode contact. The thin-film substrate is configured to flex to maintain continuous contact with contours of patient anatomy. The plurality of traces includes flexible spring-like portions to add flexibility to the thin-film substrate.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 14, 2023
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: Rio J. Vetter, Peter Gerow, David S. Pellinen, Carlos Rackham, Daryl R. Kipke, Jamille F. Hetke
  • Patent number: 11583231
    Abstract: An electroencephalography (EEG) headset can include an arrangement of straps that provides the ability to adjust the size and shape of the headset once disposed on a user's head. In some implementations, the headset can include a first elastic strap extending from a first side of the headset to a second side of the headset along a topside of the headset. The headset can also include a second strap including at least one inelastic portion and at least one elastic portion, at least one EEG electrode coupled to the second strap, a third elastic strap extending from the first side of the headset to the second side of the headset along an underside of the headset, and a plurality of connectors that couple the elastic first strap, the second strap, or the third elastic strap.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: February 21, 2023
    Assignee: X Development LLC
    Inventor: Phillip Yee
  • Patent number: 11541231
    Abstract: The disclosure relates to a reduced Larsen Effect electrode. Specifically, the disclosure relates to an electrode with an insulation-coated electrode wire coaxially surrounded over a substantial portion thereof, by predetermined assembly of alternating rigid and isolating layers.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: January 3, 2023
    Assignee: Alpha Omega Engineering Ltd.
    Inventor: John Rizik