Patents Examined by Brian M O'Hara
  • Patent number: 11673678
    Abstract: In one aspect the present subject matter is directed to a gas-electric propulsion system for an aircraft. The system may include a turbofan jet engine, an electric powered boundary layer ingestion fan that is coupled to a fuselage portion of the aircraft aft of the turbofan jet engine, and an electric generator that is electronically coupled to the turbofan jet engine and to the boundary layer ingestion fan. The electric generator converts rotational energy from the turbofan jet engine to electrical energy and provides at least a portion of the electrical energy to the boundary layer ingestion fan. In another aspect of the present subject matter, a method for propelling an aircraft via the gas-electric propulsion system is disclosed.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: June 13, 2023
    Assignee: General Electric Company
    Inventors: Jeffrey Anthony Hamel, Kurt David Murrow
  • Patent number: 11667397
    Abstract: A method of capturing an aerial vehicle comprises rotating a first blade of the aerial vehicle, the first blade coupled to a hub of the aerial vehicle and having a contour configured to facilitate entanglement of a payload line of a winch system around the aerial vehicle. The method further comprises contacting, by a leading edge of the first blade, the payload line of the winch system and pulling the payload line towards the hub of the aerial vehicle, wherein the payload line is pulled towards the hub as the first blade continues to rotate and wherein continued rotation of the first blade causes the payload line to be tangled around the hub of the aerial vehicle.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: June 6, 2023
    Assignee: Lockheed Martin Corporation
    Inventors: Dustin E. Gamble, Matthew Curran
  • Patent number: 11667394
    Abstract: A system for delivering objects from a fixed-wing aircraft has a first tether having a connector on a deployed end, an anchor apparatus fixed to a point on the ground, a slide ring assembled over the first tether, a drag line connected to the slide ring by one end, and a drag-producing device connected to at a second end, and an object carrying apparatus connected by a support line. The aircraft is flown at an altitude in an orbit at a diameter and a speed such that the deployed first tether assumes a spiral pattern. An object is placed in the object-carrying apparatus and released from the aircraft, with the slide ring guiding along the first tether, and the drag-producing element slows descent of the object in the carrying apparatus in the spiral pattern until the object reaches the ground, where the object is removed from the object-carrying apparatus.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: June 6, 2023
    Assignee: Modern Technology Solutions, Inc.
    Inventor: Marinus Bernard Bosma
  • Patent number: 11661179
    Abstract: A vertical take-off and landing aircraft includes a wing body, a duct, a rotary wing, upper-surface hinges, and upper-surface covers. The upper-surface hinges are provided at an upper-surface opening of the duct. The upper-surface covers are pivotally supported by the upper-surface hinges, and configured to cause the upper-surface opening to be open and closed. The upper-surface covers are configured to pivot, upon forward moving of the aircraft, in a closing direction by negative pressure generated on an upper surface side of the wing body, to cause the upper-surface opening to be closed. The upper-surface covers are configured to pivot, upon hovering of the aircraft, in an opening direction by pressure of an airflow flowing in the duct from the upper side to a lower side in accordance with rotation of the rotary wing, own weights of the upper-surface covers, or both, to cause the upper-surface opening to be open.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: May 30, 2023
    Assignee: SUBARU CORPORATION
    Inventor: Yuki Matsui
  • Patent number: 11649073
    Abstract: Vehicles with control surfaces and associated systems and methods are disclosed. In a particular embodiment, a rocket can include a plurality of bidirectional control surfaces positioned toward an aft portion of the rocket. In this embodiment, the bidirectional control surfaces can be operable to control the orientation and/or flight path of the rocket during both ascent, in a nose-first orientation, and descent, in a tail-first orientation for, e.g., a tail-down landing. Launch vehicles with fixed and deployable deceleration surfaces and associated systems and methods are also disclosed.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: May 16, 2023
    Assignee: Blue Origin, LLC
    Inventors: Mark Featherstone, Frederick W. Boelitz, Roger E. Ramsey, David M. Biggs
  • Patent number: 11643186
    Abstract: A duct for a ducted-rotor aircraft may include internal structural components such as a spindle that is supported by a fuselage of the aircraft, first and second annular spars that are attached to an end of the spindle, a central hub that supports a motor of the aircraft, a plurality of stators that extend from the central hub to the second spar, and a plurality of ribs that are attached to the first spar and the second spar at respective opposed ends. The spindle may include an attachment interface to which the first and second spars are attached. The attachment interface may be disposed at the second end of the spindle. The attachment interface may define first and second arc-shaped planar surfaces to which the first and second spars, respectively, are attached.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 9, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Karl Schroeder, William Anthony Amante, Joseph Richard Carpenter, Jr., Christopher Marion Johnson
  • Patent number: 11643199
    Abstract: Vertical takeoff and landing (VTOL) aircraft, especially electric VTOL (e-VTOL) aircraft include a fuselage (which may include a pair of ground-engaging skids) defining a longitudinal axis of the aircraft, forward and aft pairs of port and starboard aerodynamic wings extending laterally outwardly from the fuselage and forward and aft pairs of port and starboard rotor pods each being in substantial alignment with the longitudinal axis of the fuselage. In specific embodiments, each of the forward and aft pairs of port and starboard rotor pods comprises a forward and aft pair of rotor assemblies.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: May 9, 2023
    Assignee: EVE UAM, LLC
    Inventors: Adilson Melo, Alberto Dei Castelli, Fabio Zaroni, Felipe Nahime Cursino, Fernando Rodrigues Vianna, Flavia Renata Dantas Alves Silva, Geraldo Carvalho, Igor Miranda Rodrigues, Julio Cesar Graves, Luiz Antonio Madeira, Jr., Luiz Felipe Ribeiro Valentini, Rafael Desideri de Freitas, Rafael Estefano Reis Cleto, Ricardo Takeshi Demizu, Rodrigo Takashi Lourenco Kawasaki, Thalerson Augusto Mortari Alves, Vinicius Magalhaes Cunha, Yasser Mahmud Abdallah
  • Patent number: 11634212
    Abstract: An aircraft and a control system for the aircraft includes a tilt-wing defining an inlet configured to receive air and an outlet in fluid communication with the inlet such that the outlet is configured to expel the air. The control system includes a high-lift device coupled to at least one of a leading edge, and a trailing edge of the tilt-wing. The high-lift device is movable relative to the tilt-wing. The control system includes a compressor in fluid communication with the inlet and the outlet. The compressor is configured to increase pressure of the air that is expelled out of the outlet. The outlet directs the pressurized air toward at least one of the high-lift device and a center section of the tilt-wing to maintain attachment of airflow across the tilt-wing. A method of operating the control system of the aircraft occurs to maintain attachment of airflow across the tilt-wing.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: April 25, 2023
    Assignee: Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company
    Inventor: Francesco Giannini
  • Patent number: 11623760
    Abstract: A satellite refueling system has a refueling satellite carrying fuel, a fuel hose connected to the fuel carried by the refueling satellite, with a maneuverable end effector at a deployed end of the fuel hose, the end effector comprising a fuel supply nozzle connected to the fuel hose, a plurality of thrusters on the end effector providing thrust in a plurality of directions, an imaging device on the end effector capturing images in an immediate environment of the end effector, and computerized circuitry operating individual ones of the plurality of thrusters in response to the images captured by the imaging device. The refueling satellite deploys the fuel hose, and the computerized circuitry operates the thrusters to maneuver the end effector, bringing the fuel supply nozzle to a location to deliver fuel.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: April 11, 2023
    Assignee: Modern Technology Solutions, Inc.
    Inventor: Marinus Bernard Bosma
  • Patent number: 11613347
    Abstract: A VTOL with a redundant propulsion system, the redundant propulsion system comprising two independent groups of rotors, and each group of rotors are driven by an independent engine. When any failure is detected in the first group of rotors or in its connecting parts, the second group of rotors will be accelerated to take over the first group of rotors to supply flying thrust, or vice versa. The VTOL is quiet, low cost, easy to maneuver and highly reliable, and can be used in future personal transportation.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: March 28, 2023
    Inventor: Defang Yuan
  • Patent number: 11613356
    Abstract: A blended wing body aircraft having an interior cabin with a usable volume of at most 4500 ft3 and a cabin aspect ratio of at most 4, wherein a combination of the wings and center body has a wetted aspect ratio of at least 1.7 and at most 2.8. Also, a blended wing body aircraft having an interior cabin with a usable volume of at least 1500 ft3 and at most 4500 ft3 and a cabin aspect ratio of at least 2 and at most 4, wherein a combination of the wings and center body has a wetted aspect ratio of at least 1.9 and at most 2.7. Also, a blended wing body aircraft wherein at least each profile section having normalized half-span values from 0 to 0.3 has a leading edge having a normalized height having a nominal value within the range set forth in Table 4.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: March 28, 2023
    Assignee: BOMBARDIER INC.
    Inventors: Siddhartho Banerjee, Alexandre Galin
  • Patent number: 11608191
    Abstract: Various embodiments of the present disclosure provide a rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight. The launch and retrieval system includes a modular multicopter, a storage and launch system, an anchor system, a flexible capture member, and an aircraft-landing structure. The multicopter is attachable to the fixed-wing aircraft to facilitate launching the fixed-wing aircraft into free, wing-borne flight. The storage and launch system is usable to store the multicopter (when disassembled) and to act as a launch mount for the fixed-wing aircraft by retaining the fixed-wing aircraft in a desired launch orientation. The anchor system is usable with the multicopter, the flexible capture member, and the aircraft-landing structure to retrieve the fixed-wing aircraft from free, wing-borne flight.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 21, 2023
    Assignee: Hood Technology Corporation
    Inventors: Andreas H. von Flotow, Corydon C. Roeseler, Daniel Pepin Reiss, Jessie Massong
  • Patent number: 11603205
    Abstract: Disclosed is a device and method to load stores on an aircraft. The device may include a controller configured to: assign one or more stores to the aircraft; and control at least one actuator to: control a position of the aircraft; load the one or more stores onto one or more corresponding lift portions; position the one or more stores relative to a position of the aircraft determined in accordance with sensor information from at least one sensor; and secure the one or more stores to the aircraft.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 14, 2023
    Inventor: Victor A Grossman
  • Patent number: 11604481
    Abstract: A method for controlling a hybrid helicopter having at least one lifting rotor, at least one forward-movement propeller and an empennage provided with at least one moveable empennage surface. The method includes the following steps: using a main sensor to determine a current value of a rotor parameter conditioning a current power drawn by the lifting rotor, using an estimator to determine a current setpoint of the rotor parameter, adjusting a position of the moveable empennage surface using a deflection controller as a function of the current value and of current setpoint.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: March 14, 2023
    Assignee: AIRBUS HELICOPTERS
    Inventors: Paul Eglin, Remy Huot, Martin Embacher, Antoine Conroy
  • Patent number: 11603194
    Abstract: An aircraft having a high efficiency forward flight mode. The aircraft includes an airframe having at least one wing. A distributed propulsion system is attached to the airframe and includes a first plurality of propulsion assemblies and a second plurality of propulsion assemblies. A flight control system is operably associated with the distributed propulsion system and is operable to independently control each of the propulsion assemblies. The aircraft is configured for thrust-borne lift in a vertical takeoff and landing flight mode and wing-borne lift in the forward flight mode. In the vertical takeoff and landing flight mode, each of the propulsion assemblies is configured to generate vertical thrust. In the forward flight mode, the propulsion assemblies of the first plurality of propulsion assemblies are configured to generate forward thrust and the propulsion assemblies of the second plurality of propulsion assemblies are configured to shut down.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: March 14, 2023
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 11597509
    Abstract: An aircraft that closely integrates thrust and aerodynamics to achieve VTOL flight, forward flight, and smooth transitions from VTOL to forward flight. The invention combines a Box wing, Ducted Rotors and movable Flaperons for VTOL and sustained forward flight of an aircraft. In forward flight, the concept uses a plurality of fixed Ducted Rotors to not only provide thrust, but also enhance dynamic lift and controllability by interacting closely with the two fixed primary lifting bodies of each ducted wing section. In VTOL flight and transitioning to forward flight, the Ducted Rotors direct air through movable Flaperons attached to the trailing end of the ducted wings, providing smooth power, controllability, and aircraft orientation throughout transition. Throughout all phases of flight, differential actuation of Ducted Rotors and Flaperons provide control.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: March 7, 2023
    Inventor: Reynaldo Thomas Alfaro
  • Patent number: 11584534
    Abstract: Aspects relate to systems and methods for orienting a thrust propulsor in response to a failure event of a vertical take-off and landing (VTOL) aircraft. An exemplary system includes a plurality of lift propulsors mechanically connected to a VTOL aircraft, wherein each of the plurality of lift propulsors are configured to produce lift, a plurality of sensors, wherein at least a sensor is configured to detect a failure of at least a lift propulsor, and transmit a failure datum, a thrust propulsor mechanically attached to the VTOL aircraft with an orientable joint, wherein the thrust propulsor is configured to produce thrust and orient the thrust propulsor as a function of a thrust orientation datum, and a flight controller configured to receive the failure datum, generate a thrust orientation datum as a function of the failure datum, and transmit the thrust orientation datum to the orientable joint.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: February 21, 2023
    Assignee: BETA AIR, LLC
    Inventors: Nicholas Moy, Riley Griffin, Lochie Ferrier, Collin Freiheit
  • Patent number: 11584506
    Abstract: An aircraft and an aircraft wing assembly for an aircraft. The wing assembly includes a wing body assembly including a wing body; and at least one protruding portion connected to the wing body. The protruding portion extends aftwardly from an aft side of the wing body assembly, a leading edge of the wing body assembly defining a leading edge line, a trailing edge of the wing body assembly defining a trailing edge line extending between the inboard end and the outboard end, the trailing edge including a trailing edge of the protruding portion, the trailing edge line being a smooth line, a chord distance being defined longitudinally from the leading edge line to the trailing edge line, the chord distance at a center of the protruding portion being greater than the chord distance inboard of protruding portion and outboard of the protruding portion.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 21, 2023
    Assignee: BOMBARDIER INC.
    Inventors: Fassi Kafyeke, Francois Pepin, Farzad Mokhtarian, David Leblond
  • Patent number: 11572168
    Abstract: A multi-segment oblique flying wing aircraft which has three distinct segments including two outer wing segments and a central wing segment. The central segment may be thicker in the vertical direction and adapted to hold pilots and passengers. The outer wing segments may be substantially thinner and may taper as they progress outboard from the wing center. The multi-segment oblique flying wing aircraft be adapted for rotating into a high speed flight configuration, or may be adapted for take-off and cruise at a constant angle. In an extreme flight case, the central wing segment may rotate to a local sweep of ninety degrees.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: February 7, 2023
    Assignee: Joby Aero, Inc.
    Inventors: Gregor Veble Mikic, JoeBen Bevirt, Benjamin John Brelje
  • Patent number: 11560225
    Abstract: A combined hover and forward thrust control assembly for a dual-mode aircraft includes a support structure attached to an aircraft frame of an aircraft having at least a vertical thrust propulsor and at least a forward thrust propulsor a throttle lever rotatably mounted to the support structure, wherein rotating the throttle lever in a first direction increases power to at least a vertical thrust propulsor and rotating the throttle lever in a second direction decreases power to at least a vertical thrust propulsor and a linear thrust control mounted on the throttle lever, wherein movement of the linear thrust control in a first direction increases forward thrust of at least a forward thrust propulsor, and movement of the linear thrust control in a second direction decreases forward thrust of the forward thrust propulsor.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: January 24, 2023
    Assignee: BETA AIR, LLC
    Inventors: Cody Spiegel, Dale Williams