Patents Examined by Brian Turner
  • Patent number: 11855143
    Abstract: In one example aspect, the present disclosure is directed to a device. The device includes an active region on a semiconductor substrate. The active region extends along a first direction. The device also includes a gate structure on the active region. The gate structure extends along a second direction that is perpendicular to the first direction. Moreover, the gate structure engages with a channel on the active region. The device further includes a source/drain feature on the active region and connected to the channel. A projection of the source/drain feature onto the semiconductor substrate resembles a hexagon.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11855094
    Abstract: A semiconductor device includes a substrate; semiconductor fins over the substrate and oriented lengthwise along a first direction; first multi-dielectric-layer (MDL) fins and second MDL fins over the substrate and oriented lengthwise along the first direction, wherein the first and the second MDL fins are intermixed with the semiconductor fins, wherein each of the first MDL fins and the second MDL fins includes an outer dielectric layer and an inner dielectric layer, wherein the outer dielectric layer and the inner dielectric layer have different dielectric materials; and gate structures oriented lengthwise along a second direction generally perpendicular to the first direction, wherein the gate structures are spaced from each other along the first direction, and are separated by the first MDL fins along the second direction, wherein the gate structures engage the semiconductor fins and the second MDL fins.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 11856767
    Abstract: A method includes planarizing a protective layer over gate materials overlying a recessed region in a substrate. The planarizing includes forming a first planarized surface by planarizing a sacrificial layer over the protective layer, and forming a second planarized surface of the protective layer by etching the first planarized surface of the sacrificial layer at an even rate across the recessed region. An etch mask layer is formed over the second planarized surface, and control gate stacks are formed in the recessed region by etching the gate materials.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Han Lin, Wei Cheng Wu
  • Patent number: 11854904
    Abstract: A method includes etching a first and a second semiconductor fin to form a first and a second recesses, epitaxially growing an n-type source/drain region comprising a first portion and a second portion from the first and the second recesses, and a first middle portion in between and having a concave top surface. A first contact opening is formed extending into the n-type source/drain region and having a first V-shaped bottom. The method further includes etching a third and a fourth semiconductor fin to form a third and a fourth recesses, and forming a p-type source/drain region including a third portion and a third portion grown from the third and the fourth recesses, and a second middle portion in between and having a convex top surface. A second contact opening is formed and has a second V-shaped bottom, with a tip of the second V-shaped bottom being downwardly pointing.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Shahaji B. More
  • Patent number: 11842933
    Abstract: In an embodiment, a device includes: a first semiconductor strip over a substrate, the first semiconductor strip including a first channel region; a second semiconductor strip over the substrate, the second semiconductor strip including a second channel region; a dielectric strip disposed between the first semiconductor strip and the second semiconductor strip, a width of the dielectric strip decreasing along a first direction extending away from the substrate, the dielectric strip including a void; and a gate structure extending along the first channel region, along the second channel region, and along a top surface and sidewalls of the dielectric strip.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsai-Yu Huang, Han-De Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11842926
    Abstract: This invention relates to a method of processing a substrate, having on one side a device area with a plurality of devices. The method includes attaching a first protective film to the one side of the substrate, so that at least a central area of a front surface of the first protective film is in direct contact with the one side of the substrate, and attaching a second protective film to the opposite side of the substrate. After attaching the second protective film, a laser beam is applied to the substrate from the opposite side of the substrate. The substrate and second protective film are transparent to the laser beam. The laser beam is applied to the substrate in a plurality of positions so as to form a plurality of modified regions in the substrate.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: December 12, 2023
    Assignee: DISCO CORPORATION
    Inventors: Kensuke Nagaoka, Yasuyoshi Yubira
  • Patent number: 11843033
    Abstract: A method for the selective formation of epitaxial layers is described herein. In the method, epitaxial layers are deposited to form source and drain regions around a horizontal gate all around (hGAA structure). The method includes co-flowing a combination of chlorinated silicon containing precursors, antimony containing precursors, and n-type dopant precursors. The resulting source and drain regions are selectively grown from crystalline nanosheets or nanowires of the hGAA structure over the non-crystalline gate structure and dielectric layers. The source and drain regions are predominantly grown in a <110> direction.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: December 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Chen-Ying Wu, Abhishek Dube, Yi-Chiau Huang
  • Patent number: 11823943
    Abstract: A wafer assembly for use in a MEMS fabrication process. The wafer package includes: a MEMS wafer having a first side and an opposite second side; a silicone-free peel tape releasably attached to the first side of the wafer; a wafer bonding tape attached to the peel tape; and a carrier substrate releasably attached to the first wafer bonding tape.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: November 21, 2023
    Assignee: Memjet Technology Limited
    Inventors: Nicolas Arnal, Troy Pasiola Quimpo, Angus North
  • Patent number: 11823941
    Abstract: A substrate having a first side and a second side opposite the first side is processed by providing a protective film having a front surface and a back surface opposite the front surface and providing a holding frame for holding the substrate. The holding frame has a central opening. The holding frame is attached to the back surface of the protective film so as to close the central opening of the holding frame by the protective film, and the first side of the substrate or the second side of the substrate is attached to the front surface of the protective film. The substrate is processed from the side of the substrate which is opposite the side of the substrate attached to the front surface of the protective film, and/or the side of the substrate which is attached to the front surface of the protective film.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: November 21, 2023
    Assignee: DISCO CORPORATION
    Inventor: Karl Heinz Priewasser
  • Patent number: 11791216
    Abstract: A method of forming a semiconductor device includes: forming, in a first device region of the semiconductor device, first nanostructures over a first fin that protrudes above a substrate; forming, in a second device region of the semiconductor device, second nanostructures over a second fin that protrudes above the substrate, where the first and the second nanostructures include a semiconductor material and extend parallel to an upper surface of the substrate; forming a dielectric material around the first and the second nanostructures; forming a first hard mask layer in the first device region around the first nanostructures and in the second device region around the second nanostructures; removing the first hard mask layer from the second device region after forming the first hard mask layer; and after removing the first hard mask layer, increasing a first thickness of the dielectric material around the second nanostructures by performing an oxidization process.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Te-Yang Lai, Hsueh-Ju Chen, Tsung-Da Lin, Chi On Chui
  • Patent number: 11791155
    Abstract: Examples of the present technology include semiconductor processing methods to form diffusion barriers for germanium in a semiconductor structure. The methods may include forming a semiconductor layer stack from pairs of Si-and-SiGe layers. The Si-and-SiGe layer pairs may be formed by forming a silicon layer, and then forming the germanium barrier layer of the silicon layer. In some embodiments, the germanium-barrier layer may be less than or about 20 ?. A silicon-germanium layer may be formed on the germanium-barrier layer to complete the formation of the Si-and-SiGe layer pair. In some embodiments, the silicon layer may be an amorphous silicon layer, and the SiGe layer may be characterized by greater than or about 5 atom % germanium. Examples of the present technology also include semiconductor structures that include a silicon-germanium layer, a germanium-barrier layer, and a silicon layer.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: October 17, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Takehito Koshizawa, Bo Qi, Abhijit Basu Mallick, Nitin K. Ingle
  • Patent number: 11784092
    Abstract: Singulated integrated circuit (IC) dice are provided. The singulated IC dice are positioned on dicing tape to provide open space between sides of adjacent singulated IC dice. An underfill layer and a protective cover film is disposed above the singulated IC dice and the open space between the sides of the adjacent singulated IC dice. The underfill layer and the protective cover film include one or more photodefinable materials. An exposure operation is performed to produce a pattern on the underfill layer and the protective cover film. Based on the pattern, the underfill layer and the protective cover film is removed at areas above the open space between the sides of the adjacent singulated IC dice to create portions of the underfill layer and portions of the protective cover film that are disposed above the singulated IC dice.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: October 10, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Andrew M. Bayless, Brandon P. Wirz
  • Patent number: 11776973
    Abstract: A method of manufacturing a display device, the method including providing a substrate, forming a first electrode, a second electrode spaced from the first electrode and in a same plane as the first electrode, a first alignment line connected to the first electrode, and a second alignment line connected to the second electrode on the substrate, self-aligning the plurality of light emitting elements by providing a solution containing a plurality of light emitting elements on the substrate, removing the first alignment line and the second alignment line from the substrate on which the plurality of light emitting elements are self-aligned, forming a first contact electrode electrically connecting one end of each light emitting element to the first electrode, and forming a second contact electrode electrically connecting an other end of each light emitting element to the second electrode.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 3, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Joon Kim, Kyung Bae Kim, Kyung Hoon Chung, Mee Hye Jung
  • Patent number: 11764096
    Abstract: Methods for protecting edges of semiconductor dies are disclosed. Further, the disclosed methods provide for separating the semiconductor dies without using a dicing technique. In one embodiment, a plurality of trenches may be formed on a front side of a substrate including a plurality of semiconductor dies. Individual trenches may correspond to scribe lines of the substrate where each trench includes a depth greater than a final thickness of the semiconductor dies. A dielectric layer may be formed on sidewalls of the trenches, thereby protecting the edges of the semiconductor dies, prior to filling the trenches with an adhesive material. Subsequently, the substrate may be thinned from a back side such that the adhesive material in the trenches may be exposed from the back side. The adhesive material may be removed to singulate individual semiconductor dies of the plurality from the substrate.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Brandon P. Wirz, Andrew M. Bayless
  • Patent number: 11757021
    Abstract: The present disclosure provide a method for using a hard mask layer on a top surface of fin structures to form a fin-top mask layer. The fin-top mask layer can function as an etch stop for subsequent processes. Using the fin-top hard mask layer allows a thinner conformal dielectric layer to be used to protect semiconductor fins during the subsequent process, such as during etching of sacrificial gate electrode layer. Using a thinner conformal dielectric layer can reduce the pitch of fins, particularly for input/output devices.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Ruei Jhan, Kuan-Ting Pan, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11735464
    Abstract: The described method enables removal of any flexible material from a temporary carrier for transfer to another surface. In particular, a semiconductor wafer is commonly held by a temporary adhesive to a carrier substrate for support during a variety of processing steps, including thinning of the semiconductor device layer. Subsequent to processing, the described method attaches the ultra-thin device layer to a roll of tape for removal from the temporary adhesive, followed by transfer to a demount roller, which then releases it onto a desired permanent surface. Utilizing the flexible nature of the ultra-thin device layer, the sequence of rollers is able to peel it from the temporary adhesive without any need for laser release processing or chemical adhesive removal while maintaining the thinned wafer in a planar form during processing. This transfer supports operations that include a change of orientation, such as from face up to face down.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: August 22, 2023
    Assignee: American Semiconductor, Inc.
    Inventors: Douglas R. Hackler, Sr., Randall S. Parker
  • Patent number: 11735483
    Abstract: Embodiments of the present disclosure provide a method of forming N-type and P-type source/drain features using one patterned mask and one self-aligned mask to increase windows of error tolerance and provide flexibilities for source/drain features of various shapes and/or volumes. In some embodiments, after forming a first type of source/drain features, a self-aligned mask layer is formed over the first type of source/drain features without using photolithography process, thus, avoid damaging the first type of source/drain features in the patterning process.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yao-Sheng Huang, I-Ming Chang, Huang-Lin Chao
  • Patent number: 11728173
    Abstract: A method includes forming a semiconductor layer over a substrate; etching a portion of the semiconductor layer to form a first recess and a second recess; forming a first masking layer over the semiconductor layer; performing a first thermal treatment on the first masking layer, the first thermal treatment densifying the first masking layer; etching the first masking layer to expose the first recess; forming a first semiconductor material in the first recess; and removing the first masking layer.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Ju Chen, Chung-Ting Ko, Wan-Chen Hsieh, Chun-Ming Lung, Tai-Chun Huang, Chi On Chui
  • Patent number: 11728223
    Abstract: A semiconductor device and methods of forming the semiconductor device are described herein and are directed towards forming a source/drain contact plug for adjacent finFETs. The source/drain regions of the adjacent finFETs are embedded in an interlayer dielectric and are separated by an isolation region of a cut-metal gate (CMG) structure isolating gate electrodes of the adjacent finFETs The methods include recessing the isolation region, forming a contact plug opening through the interlayer dielectric to expose portions of a contact etch stop layer disposed over the source/drain regions through the contact plug opening, the contact etch stop layer being a different material from the material of the isolation region. Once exposed, the portions of the CESL are removed and a conductive material is formed in the contact plug opening and in contact with the source/drain regions of the adjacent finFETs and in contact with the isolation region.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Ting Chen, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11728200
    Abstract: A wafer bonding apparatus is provided includes a lower support plate configured to structurally support a first wafer on an upper surface of the lower support plate; a lower structure adjacent to the lower support plate and movable in a vertical direction that is perpendicular to the upper surface of the lower support plate, an upper support plate configured to structurally support a second wafer on a lower surface of the lower support plate, and an upper structure adjacent to the upper support plate and movable in the vertical direction.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: August 15, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoe Chul Kim, Seok Ho Kim, Tae Yeong Kim, Hoon Joo Na, Hyung Jun Jeon