Patents Examined by Carmen V Lyles-Irving
  • Patent number: 11437672
    Abstract: Electrical energy store (1), device and/or vehicle and method for producing an electrical energy store (1) comprising a control unit (11) and electrical energy storage cells (2), each comprising a cell controller (31), wherein the control unit (11) comprises a printed circuit board which is cohesively connected to the respective cell controller (31) of each electrical energy storage cell (2).
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: September 6, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Ruehle, Boris Gendlin, Ionut Marian Lica, Matthias Oechsle, Thomas Dittert, Maximilian Russ-Mohl
  • Patent number: 11424634
    Abstract: A battery system includes battery cells to store electrical energy and to output electrical power. The battery system further includes a housing, a shunt, a control board, and a connector assembly. The housing includes a cavity that the shunt is disposed in and is in direct contact with, where the cavity facilitates dissipating torsional force exerted on the shunt. The control board is disposed within the housing and includes sensing circuitry to determine an operational parameter of the battery cells and control circuitry to facilitate controlling operation of the battery cells based on the operational parameter. The connector assembly electrically couples the shunt to the sensing circuitry via a spacing connector and a securing connector. The spacing connector is disposed between the control board and an inner surface of the housing while the securing connector extends through the shunt to couple to the spacing connector through the housing.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: August 23, 2022
    Assignee: CPS Technology Holdings LLC
    Inventor: Abed Al Fattah Isam Shafie
  • Patent number: 11424452
    Abstract: The organic expander in a negative electrode material of a lead-acid battery contains an S polymer having an aromatic ring and an L polymer having an aromatic ring, and a mass MS1 of the S polymer and a mass ML1 of the L polymer satisfy 0.05?ML1/(ML1+MS1)?0.15.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: August 23, 2022
    Assignee: GS Yuasa International Ltd.
    Inventors: Hiroki Kagohashi, Ikumi Motoi
  • Patent number: 11424480
    Abstract: A lithium-ion-conducting composite material and process of producing are provided. The composite material includes at least one polymer and lithium-ion-conducting particles. The particles have a sphericity ? of at least 0.7. The composite material includes at least 20 vol % of the particles for a polydispersity index PI of the particle size distribution of <0.7 or are present in at least 30 vol % of the composite material for the polydispersity index in a range from 0.7 to <1.2, or are present in at least 40 vol % of the composite material for the polydispersity index of >1.2.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: August 23, 2022
    Assignee: SCHOTT AG
    Inventors: Jörg Schuhmacher, Philipp Treis, Jochen Drewke, Hans-Joachim Schmitt, Rolf Samsinger, Andreas Roters, Meike Schneider, Yvonne Menke-Berg
  • Patent number: 11424470
    Abstract: Methods and systems are provided for a redox flow battery system. In one example, the redox flow battery is adapted with an additive included in a battery electrolyte and an anion exchange membrane separator dividing positive electrolyte from negative electrolyte. An overall system cost of the battery system may be reduced while a storage capacity, energy density and performance may be increased.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 23, 2022
    Assignee: ESS TECH, INC.
    Inventors: Yang Song, Craig E. Evans
  • Patent number: 11394088
    Abstract: A secondary battery module incudes a secondary battery, a secondary battery laminate, a busbar, and one pair of lashing plates. The one pair of lashing plates is provided on either end of the secondary battery laminate in a laminating direction. The one pair of lashing plates is connected via a cell block provided so as to face the narrow surface of the secondary battery. The secondary battery laminate is lashed in a state of being pressed in the laminating direction.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: July 19, 2022
    Assignee: Vehicle Energy Japan Inc.
    Inventor: Hitoshi Nishimori
  • Patent number: 11387516
    Abstract: A battery module includes a secondary battery including an electrode assembly formed by alternately stacking an electrode and a separator and a pouch type battery case which accommodates the electrode assembly therein and in which an upper case and a lower case are integrated with each other, a housing which includes at least one opening and into which the secondary battery is inserted through an opening of the at least one opening, and a cooling unit formed in the housing and disposed at one side of the secondary battery. The battery case includes a folding edge part formed at an area on a side of the secondary battery at which the upper case and the lower case are folded at an edge where the upper case and the lower case are connected, and the folding edge part of the secondary battery directly contacts the cooling unit.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 12, 2022
    Inventors: Min Hyung Kim, Hey Woong Park, Seong Yoon Lim
  • Patent number: 11387521
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: July 12, 2022
    Assignee: Optodot Corporation
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, Jr., Samuel Lim
  • Patent number: 11380967
    Abstract: In the stacked battery, a short-circuit current shunt part is electrically connected to the electric elements, and an insulating layer of the short-circuit current shunt part is constituted of material having a predetermined melting point or glass transition temperature. When heat is excessively generated in the battery due to internal short circuits etc. and the temperature of the battery reaches the melting point of the insulating layer, the insulating layer melts and its shape is changed to short-circuit the short-circuit current shunt part, and current flows from the electric elements into the short-circuit current shunt part. To measure the current flowing into the short-circuit current shunt part makes it possible to easily grasp excessive heat generation of the battery to suppress deterioration of the battery due to heat generation.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: July 5, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hajime Hasegawa, Norihiro Ose, Hideaki Nishimura, Yuki Matsushita
  • Patent number: 11374253
    Abstract: Provided herein is an electrode assembly of lithium-ion battery, comprising at least one anode, at least one cathode and at least one separator interposed between the at least one anode and at least one cathode, wherein the water content of the electrode assembly is less than 20 ppm by weight, based on the total weight of the electrode assembly.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: June 28, 2022
    Assignee: GRST INTERNATIONAL LIMITED
    Inventors: Kam Piu Ho, Ranshi Wang, Peihua Shen
  • Patent number: 11374226
    Abstract: Corrosion mitigation in a battery may include displacing a first flowable medium with a second flowable medium along a first electrode to interrupt fluid communication of the first flowable medium with the first electrode—thus interrupting operation of the battery—while a second electrode remains in contact with a flowable medium (e.g., one or more of the first flowable medium or another flowable medium, such as a gel). For example, a membrane (e.g., an underwater oleophobic material) may be disposed between the first electrode and the second electrode. An oil may displace an aqueous electrolyte on a first side of the membrane toward a metallic electrode while the aqueous form of the electrolyte remains in contact with an air electrode on a second side of the separator membrane disposed toward the air electrode.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: June 28, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Brandon James Hopkins, Douglas P. Hart, Yang Shao-Horn
  • Patent number: 11367881
    Abstract: An object of the present disclosure is to provide a method for manufacturing a fuel cell that ensures developing a high adhesive strength to a separator. One aspect of an embodiment is a method for manufacturing a fuel cell where a pair of separators are mutually bonded with a sealing member. The sealing member includes a thermoplastic resin containing a crystalline polymer as an adhesive layer. The method for manufacturing the fuel cell includes: preparing a stack structure in which the sealing member is disposed between the pair of separators; heating the stack structure at a melting point or higher of the thermoplastic resin; after the heating, holding the stack structure in a temperature range of ±10° C. of a crystallization temperature of the thermoplastic resin to promote a crystallization of the thermoplastic resin; and after the holding, further cooling the stack structure.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: June 21, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiki Sugimoto, Makoto Yoshida, Shunsuke Suzuki, Tomokazu Hayashi, Shinya Takeshita, Takuya Mitsuoka, Yoshitake Suganuma, Yuichi Kato, Kyoko Nakai
  • Patent number: 11365012
    Abstract: An aircraft that includes a fuselage, an electric motor driven propulsion system, and a fuel cell system configured to provide electricity to the electric motor. The fuel cell system includes a fuel cell, a hydrogen tank, an oxygen tank, an air channel, and a cathode switch. The cathode switch being configured to convert between an air mode, wherein the fuel cell operates utilizing air from the air channel, and an oxygen mode, wherein the fuel cell operates utilizing oxygen from the oxygen tank.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 21, 2022
    Assignee: Textron Innovations Inc.
    Inventor: Joseph Dean Rainville
  • Patent number: 11362338
    Abstract: A battery component includes a polymer frame having at least one window, the polymer frame having a first planar side and an opposite second planar side, and a window edge between the first and second planar sides. The battery component also has a battery cell component having a separator and bipolar current collector, the battery cell component being attached to the frame, the separator or bipolar current collector being attached to the first planar side or the window edge. A battery stack, a method for handling the battery component as an individual unit are also provided, electric vehicle battery and electric vehicle are also provided.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: June 14, 2022
    Assignees: VOLKSWAGEN AG, AUDI AG, DR. ING. H.C. F. PORSCHE
    Inventors: Mirko Herrmann, Angela Speidel, Rouven Scheffler
  • Patent number: 11362381
    Abstract: A battery box, supporting structure and insuring thermal management of one or more battery cells allowing a temperature control of said battery cells environment to insure its optimal operational condition, the battery box comprises at least one aluminum hollow profile, wherein said aluminium hollow profile comprises at least two chambers, wherein at least one chamber is filled with a first phase change material having a melting point T1F and at least one chamber is filled with a second phase change material having a melting point T2F, where T1F>T2F.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: June 14, 2022
    Assignees: CONSTELLIUM AUTOMOTIVE USA, LLC, CONSTELLIUM SINGEN GMBH
    Inventors: John Peter Biel, Jr., Weiling Wang, Nicolas Gorse
  • Patent number: 11349117
    Abstract: A method of synthesizing an electrode material for lithium ion batteries from Fe3O4 nanoparticles and multiwalled carbon nanotubes (MWNTs) to yield (Fe3O4-NWNTs) composite heterostructures. The method includes linking the Fe3O4 nanoparticles and multiwalled carbon nanotubes using a ?-? interaction synthesis process to yield the composite heterostructure electrode material. Since Fe3O4 has an intermediate voltage, it can be considered an anode (when paired with a higher voltage material) or a cathode (when paired with a lower voltage material).
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: May 31, 2022
    Assignee: The Research Foundation for the State University of New York
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Patent number: 11349118
    Abstract: The invention provides a cathode active material having a discrete change in concentrations of a first base region and a second pulse region. Also provided is a method for preparing a cathode active material, the method having the steps: supplying chelating agent, aqueous basic solution and a first aqueous metal salt solution to a reactor to create a base region; supplying a second aqueous metal-salt solution to a reactor to form a pulse region, wherein the second aqueous metal-salt solution is intermittently or continuously added during or after the creation of the base region; thermally treating the base region and the pulse region to create active metal precursors; mixing the precursors with lithium salt to produce a mixture; and thermally treating the mixture.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 31, 2022
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: YoungHo Shin, Gregory K. Krumdick
  • Patent number: 11342557
    Abstract: A surface of a LiCoO2-based positive electrode active material to have a rock salt crystal structure is provided. Specifically, a positive electrode active material for a lithium rechargeable battery is provided, including: a core particle containing lithium cobalt oxide doped with aluminum (Al); and a coating layer positioned on a surface of the core particle and containing a cobalt(Co)-based compound having a rock salt crystal structure. A method of producing the positive electrode active material is also provided using a solid-phase method. The positive electrode active material can be applied to a positive electrode, lithium rechargeable battery, battery module, battery pack, and the like.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: May 24, 2022
    Inventors: Chi Ho Jo, Hyuck Hur, Seul Ki Kim, Wang Mo Jung, Gi Beom Han
  • Patent number: 11335970
    Abstract: A battery pack includes a pack case configured to accommodate a cell module assembly in an inner space thereof and having an opening formed at one side, and a pack cover having a degassing port communicating with the inner space and configured to cover the opening of the pack case. The cell module assembly includes a cell fixing frame having an upper plate and a lower plate respectively disposed at an upper portion and a lower portion of the cell stack and in surface contact with an upper wall and a lower wall of the pack case. At least one of the upper plate and the lower plate includes at least one gas moving route formed by concavely depressing one surface in contact with the upper wall or the lower wall of the pack case along a path toward the degassing port, and at least one hole.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 17, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Hee-Yong Kwon, Jun-Yeob Seong, Yong-Jin Cho
  • Patent number: 11335908
    Abstract: A battery includes an anode, an electrolyte including a solvent and at least one ion conducting salt, and a cathode including a metal halide salt incorporated into an electrically conductive material. The electrolyte is in contact with the anode, the cathode, and an oxidizing gas.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 17, 2022
    Assignee: International Business Machines Corporation
    Inventors: Jangwoo Kim, Young-Hye Na, Robert D. Allen