Patents Examined by Carol Tsai
  • Patent number: 8374806
    Abstract: An ultrasonic phase-shift detection device includes a clock generator, a divider, a first counter, a comparator, a phase detector and a second counter. The divider is provided for dividing the clock signal to generate ultrasonic signals. The comparator is provided for comparing the counting value of the first counter and a predetermined number. The phase detector is provided for comparing the phase shift between different ultrasonic signals. The second counter is provided for counting to generate the digital result signal.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 12, 2013
    Assignee: Tatung Company
    Inventors: Shu-Ting Liao, Chao-Fa Lee, Cheng-Hsing Kuo
  • Patent number: 8370088
    Abstract: The invention relates to a method for the real-time determination of the filling level of a cryogenic tank intended to house a two-phase liquid/gas mixture, in which at least one of the the level, volume or mass contained in the tank is calculated for the liquid or the gas at each time step. The method includes the use of a thermal model at each time step to calculate the average temperatures of the liquid and the gas in the tank on the basis of the measured pressure differential and at least one of the pressures of said differential; calculation of the change over time in at least the density of the liquid on the basis of the average temperature of the liquid and the pressures in the tank.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 5, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Fouad Ammouri, Florence Boutemy, Jonathan Macron, Alain Donzel
  • Patent number: 8364421
    Abstract: Methods and devices for detecting particles in a fluid within a medium, such the analyzing device includes: a source adapted to transmit signals into the medium; at least one detector adapted to detect signals transmitted from the source such that the at least one detector and the source are structured and arranged on opposite sides of the medium; at least one processing unit in communication with the at least one detector and adapted to produce a plurality of output signals representative of one of at least one particle characteristic or one or more particle property.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 29, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Felix Chen, Gary Corris
  • Patent number: 8359168
    Abstract: The present invention relates to a fuel identification system and method normally applied to internal combustion engine vehicles of the flex-fuel type by means of which it is possible to identify the composition of the fuel used at each point in time, particularly the ratio used in a gasoline/ethanol blend or detect the presence of air or fuel in the vapor state in the fuel line, using the same device that heats the fuel.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: January 22, 2013
    Assignee: Robert Bosch Limitada
    Inventors: Fernando Lepsch, Marcos Melo Araujo, Hilton Rafael Spiler, Carlos Henrique De Oliveira Melo, Hans Hugo Eichel, Jr.
  • Patent number: 8355872
    Abstract: A system for and method of automatically evaluating similarity between a target geological region of interest and a plurality of known geological regions of interest includes selecting a plurality of quantitative parameters describing reservoir characteristics of the target geological region of interest and defining a graphical target line based on values of the selected parameters. Comparison lines are graphically constructed for at least some of the plurality of known geological regions of interest, respective comparison lines representing respective values of the quantitative parameters describing corresponding characteristics of respective regions among the known geological regions of interest. A similarity factor between each of the comparison lines and the target line is calculated based on the plotted target and comparison lines. The comparison lines are ranked based on the calculated similarity factors, and similarity factor versus similarity rank are graphically displayed.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: January 15, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Dana E. Rowan
  • Patent number: 8352201
    Abstract: A structural health monitoring system using ASICs for signal transmission, reception, and analysis. Incorporating structural health monitoring functionality into one or more ASICs provides a durable yet small, lightweight, low cost, and portable system that can be deployed and operated in field conditions. Such systems provide significant advantages, especially in applications such as armor structures.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: January 8, 2013
    Assignee: Acellent Technologies, Inc.
    Inventors: Xinlin Qing, Chang Zhang, Irene Li, Fu-kuo Chang, Hung Chi Chung
  • Patent number: 8352190
    Abstract: An exemplary embodiment of the present invention provides a method for interpolating seismic data. The method includes collecting seismic data of two or more types over a field (401), determining an approximation to one of the types of the seismic data (402), and performing a wave-field transformation on the approximation to form a transformed approximation (405), wherein the transformed approximation corresponds to another of the collected types of seismic data. The method may also include setting the transformed approximation to match the measured seismic data of the corresponding types at matching locations (408), performing a wave-field transformation on the transformed approximation to form an output approximation (412), and using the output approximation to obtain a data representation of a geological layer (416).
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 8, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Anatoly Baumstein, Ramesh Neelamani
  • Patent number: 8346500
    Abstract: A self check-type flame detector includes a casing provided with a monitoring window formed therein. A wavelength generation unit is disposed inside the casing and generates a wavelength in a direction of the monitoring window. A wavelength detection element is disposed inside the casing and detects the wavelength. A comparison unit is provided with a wavelength DB for storing intensity of a reference wavelength and determines whether the monitoring window has been contaminated. A display unit is located outside the casing and displays a state of the monitoring window. A communication unit is disposed inside the casing and configured to receive operation information for the wavelength generation unit, to provide the operation information to the wavelength generation unit, and to transmit the intensity of the wavelength, or a normal signal or a contamination signal of the monitoring window.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: January 1, 2013
    Assignee: Chang Sung Ace Co., Ltd.
    Inventors: Yeu Yong Lee, Seung Hun Choi
  • Patent number: 8346492
    Abstract: A system for detecting and locating leaks includes a pipeline, strain sensors positioned on the external surface of the pipeline, acoustic pressure sensors positioned at intervals along the pipeline, local processors connected to the strain sensors and acoustic pressure sensors, and a central processor connected to the local processors. The strain sensors measure a strain on the external surface of the pipeline indicative of changes in the pressure of the fluid within the pipeline. The acoustic pressure sensors sense acoustic signals within the pipline. Sensed acoustic pressure signals and sensed strain measurements are compared to each other and to stored profiles to detect and locate leaks.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: January 1, 2013
    Assignees: Acoustic Systems, Inc., Acoustic Systems, Inc.
    Inventors: Bao-Wen Yang, Eric Yang, Marion Recane, Stephanie H. Yang
  • Patent number: 8340941
    Abstract: A temperature measurement system is provided for a light emitting diode (LED) assembly that includes an LED having two semiconductors joined together at an LED junction. The system includes a temperature sensor operatively connected to the LED assembly at a remote location that is remote from the LED junction. The temperature sensor is configured to measure a temperature of the LED assembly at the remote location. A temperature calculation module is operatively connected to the temperature sensor for receiving the measured temperature at the remote location from the temperature sensor. The temperature calculation module is configured to determine a junction temperature at the LED junction based on the measured temperature a the remote location.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 25, 2012
    Assignee: Tyco Electronics Corporation
    Inventors: Steve Jackson, Robert Rix, Bruce Pelton, Mohammad S. Ahmed, Ronald Martin Weber, Matthew E. Mostoller
  • Patent number: 8340943
    Abstract: Provided is an apparatus of separating a musical sound source, which may re-construct mixed signals into target sound sources and other sound sources directly using sound source information performed using a predetermined musical instrument when the sound source information is present, thereby more effectively separating sound sources included in the mixed signal. The apparatus may include a Nonnegative Matrix Partial Co-Factorization (NMPCF) analysis unit to perform an NMPCF analysis on a mixed signal and a predetermined sound source signal using a sound source separation model, and to obtain a plurality of entity matrices based on the analysis result, and a target instrument signal separating unit to separate, from the mixed signal, a target instrument signal corresponding to the predetermined sound source signal by calculating an inner product between the plurality of entity matrices.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: December 25, 2012
    Assignees: Electronics and Telecommunications Research Institute, Postech Acadeny-Industry Foundation
    Inventors: Min Je Kim, Seungjin Choi, Jiho Yoo, Kyeongok Kang, Inseon Jang, Jin-Woo Hong
  • Patent number: 8340934
    Abstract: This invention discloses a method of performance analysis for VRLA battery which applies the method of using the float voltage dispersion ratio of the battery to evaluate the battery performance from a new perspective, and it is an online real-time test which applies several ways to evaluate the performance of the VRLA battery. According to the relevance between the dispersion of the float charge voltage of the battery and its performance, the method gets the result of the battery performance through calculating the battery float charge voltage dispersion ratio and making it relevant with the battery performance. It has small workload, convenient operation and no danger to the system when doing online testing. It also won't affect the cycle life of the VRLA battery.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 25, 2012
    Assignee: Hangzhou Gold Electronic Equipment Co., Ltd.
    Inventors: Jianhong Xu, Ling Yuan, Yi Zheng
  • Patent number: 8335661
    Abstract: Various methods and systems for scoring applications are disclosed. One method involves generating a baseline measuring a parameter of a computer system. The parameter is related, directly or indirectly, to the energy consumption of the computer system. The method next involves installing and running an application on the computer system. The previously measured parameter is measured with the application running. Next, a score is calculated for the application based on the two measurements. This score indicates how green the application is.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 18, 2012
    Assignee: Symantec Operating Corporation
    Inventor: Sourabh Satish
  • Patent number: 8335650
    Abstract: Example methods and apparatus to determine phase-change pressures are disclosed. A disclosed example method includes capturing a fluid in a chamber, pressurizing the fluid at a plurality of pressures, measuring a plurality of transmittances of a signal through the fluid at respective ones of the plurality of pressures, computing a first magnitude of a first subset of the plurality of transmittances, computing a second magnitude of a second subset of the plurality of transmittances, comparing the first and second magnitudes to determine a phase-change pressure for the fluid.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: December 18, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Kai Hsu, Kentaro Indo, Peter S. Hegeman, Carsten Sonne
  • Patent number: 8332175
    Abstract: An oscilloscope probe calibrating system for a single terminal probe and a differential probe includes an oscilloscope, a main branch module, a sub-branch module, and a resistor. The oscilloscope includes multiple inputs for receiving signals from the single terminal probe and the differential probe, an output for outputting an original calibration signal, and a display module displaying the waveforms of the original calibration signal and the signals from the single terminal probe and the differential probe. The main branch module converts the original calibration signals to a number of first calibration signals. The sub-branch module converts the first calibration signals to a number of second calibration signals. The sub-branch module includes a single terminal sub-branch module and a differential sub-branch module coupled to the main branch module. One end of the resistor is connected between the main branch module and the differential sub-branch module, and the other end is grounded.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 11, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Hui Li
  • Patent number: 8326542
    Abstract: A computer implemented method for retrieving seismic data from a seismic section provided in a bitmap format. The method includes reconstructing a two dimensional matrix of seismic interpolated data in which a value at a given pixel in the matrix is proportional to local density of wiggles in the seismic section with an added value of a previously calculated pixel. The method may be implemented in either of computer hardware configured to perform said method and computer software embodied in a non-transitory, tangible, computer-readable storage medium. Also disclosed are corresponding computer program product and data processing system.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 4, 2012
    Assignee: International Business Machines Corporation
    Inventors: Dan Shmuel Chevion, Yaacov Navon
  • Patent number: 8326582
    Abstract: An acoustic sensor acquires acoustic data corresponding to a rotating component of a machine during operation of the machine. The acoustic sensor can be configured to enhance acoustic signals in a range of frequencies corresponding to at least one evaluated condition of the rotating component and/or enhance the acoustic signals received from a directional area narrowly focused on the rotating component. The rotating component is evaluated using the acoustic data acquired by the acoustic sensor. In an embodiment, the machine can be a vehicle traveling past a parabolic microphone. In a more specific embodiment, the vehicle is a rail vehicle and the rotating component is a railroad wheel bearing.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 4, 2012
    Assignee: International Electronic Machines Corporation
    Inventors: Zahid F. Mian, Richard L. Smith
  • Patent number: 8326546
    Abstract: Methods for evaluating changes in glucose levels include selecting a repeating event, obtaining a pre-event measurement and a post-event measurement for a plurality of occurrences of the repeating event wherein a glucose change between the pre-event measurement and post-event measurement may be determined for each of the plurality of occurrences of the repeating event, and, recording unique details for each of the plurality of occurrences of the repeating event such that the unique details may be correlated with the glucose change for each of the plurality of occurrences of the repeating event.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 4, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Doshia Stewart, John R. Sullivan, Lisa N. Huse, William Polonsky
  • Patent number: 8321172
    Abstract: A method for determining at least one air system variable in an air supply system of an internal combustion engine in successive, discrete calculation steps, a differential equation being provided with respect to the air system variable based on measured and/or modeled variables, which describe conditions in the air supply system, a difference equation being formed for the quantization of the differential equation according to an implicit method, and the difference equation being solved in each discrete calculation step, in order to obtain the air system variable.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 27, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Alexandre Wagner, Thomas Bleile, Slobodanka Lux, Christian Fleck
  • Patent number: 8321161
    Abstract: The invention as disclosed is an autonomous magnetic measurement system for monitoring the background magnetic fields associated with power lines, electronic devices, electronic vehicles and the Earth's background magnetic field. The components of the autonomous magnetic measurement system include a series of three axis analog magnetic sensors, a fluxgate compass, and a programmable micro-controller. The micro-controller receives data from the sensor and compass and is programmed to autonomously detect magnetic signals having particular characteristics of interest.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: November 27, 2012
    Assignee: The United States of America as represented by the Secretarty of the Navy
    Inventors: Anthony B. Bruno, Rolf G. Kasper