Patents Examined by Chris H. Chu
  • Patent number: 11971572
    Abstract: Disclosed is an optical waveguide including a waveguide core and waveguide cladding surrounding the waveguide core. The waveguide cladding includes at least one stack of cladding material layers positioned laterally adjacent to a sidewall of the waveguide core such that each cladding material layer in the stack abuts the sidewall of the waveguide core. Each of the cladding material layers in the stack has a smaller refractive index than the waveguide core and at least two of the cladding material layers in the stack have different refractive indices, thereby tailoring field confinement and reshaping the optical mode. Different embodiments include different numbers of cladding material layers in the stack, different stacking orders of the cladding material layers, different waveguide core types, symmetric or asymmetric cladding structures on opposite sides of the waveguide core, etc. Also disclosed is a method of forming the optical waveguide.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: April 30, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Shesh Mani Pandey, Yusheng Bian, Francis O. Afzal
  • Patent number: 11971571
    Abstract: An optical fiber according to an embodiment has a structure capable of reducing an increase in transmission loss. The optical fiber includes a glass part extending in a direction of a central axis, and the glass part is comprised of silica-based glass, includes a core and a cladding, and has residual stress approximately uniform throughout a cross section of the glass part orthogonal to the central axis, the core having the central axis and being doped with chlorine with a mass fraction of 1% or more, the cladding surrounding the core and having a refractive index lower than a maximum refractive index of the core.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: April 30, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hirotaka Sakuma, Yuki Kawaguchi, Masato Suzuki
  • Patent number: 11947117
    Abstract: A waveguide display includes a waveguide transparent to visible light, a first volume Bragg grating (VBG) on the waveguide and characterized by a first refractive index modulation, and a second reflection VBG on the waveguide and including a plurality of regions characterized by different respective refractive index modulations. The first reflection VBG is configured to diffract display light in a first wavelength range and a first field of view (FOV) range such that the display light in the first wavelength range and the first FOV range propagates in the waveguide through total internal reflection to the plurality of regions of the second reflection VBG. The plurality of regions of the second reflection VBG are configured to diffract the display light in different respective wavelength ranges within the first wavelength range and the first FOV range.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: April 2, 2024
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Wanli Chi, Dominic Meiser, Yang Yang, Wai Sze Tiffany Lam, Pasi Saarikko, Ningfeng Huang
  • Patent number: 11940649
    Abstract: An optical fiber bundle structure includes: plural optical fiber core wires; a crossing preventing member; and a grasping member. Further, the crossing preventing member has slits and the widths of the slits positioned at the respective sides are each equal to or larger than a difference between: a length of one side of a polygon circumscribing the plural optical fiber core wires at a hindmost end portion of the slits at the trailing end; and a length of one side of a polygon circumscribing the plural optical fiber core wires at the leading end.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: March 26, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kohei Kawasaki, Ryuichi Sugizaki, Masayoshi Tsukamoto, Masanori Takahashi, Shigehiro Takasaka, Koichi Maeda
  • Patent number: 11914213
    Abstract: The disclosed fiber optic cable may include (1) a plurality of optical fibers, (2) a core tube surrounding the plurality of optical fibers, (3) a thixotropic gel filling an interstitial space among the optical fibers within the core tube, (4) an intermediate layer surrounding the core tube, where the intermediate layer includes a plurality of linear elements contra-helically wrapped about the core tube, and (5) an outer layer surrounding the intermediate layer, where the outer layer includes a combination of a moisture-cure cross-linked material and an activation catalyst, where the outer layer is formed by masticating and extruding the combination onto the intermediate layer. Various other cables, assemblies, and methods are also disclosed.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: February 27, 2024
    Assignee: Meta Platforms, Inc.
    Inventor: Wayne Michael Kachmar
  • Patent number: 11914191
    Abstract: To provide an optical branch coupler which facilitates communizing the design of an optical transmission path, the optical branch coupler comprising: a first add drop unit for outputting a third optical signal to a first line in which a first optical signal received from the first line and a second optical signal inserted into the first line are multiplexed and outputting the first optical signal; and a second add drop unit for receiving the first optical signal, receiving a sixth optical signal from a second line different from the first line in which a fourth optical signal and a fifth optical signal dropped from the second line are wavelength multiplexed, demultiplexing the fourth and fifth optical signals, and outputting a seventh optical signal to the second line in which the fourth optical signal and the first optical signal transmitted by the first add drop unit are multiplexed.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: February 27, 2024
    Assignee: NEC CORPORATION
    Inventor: Ryuji Aida
  • Patent number: 11906805
    Abstract: A fiber optic cable assembly comprises: a cable jacket; distinct groups of optical fibers carried within the cable jacket and extending beyond a first end of the cable jacket; a furcation body positioned on the first end of the cable jacket such that the distinct groups of optical fibers extend beyond the furcation body; and a pulling grip assembly having a proximal end selectively secured to the furcation body, a distal end opposite the proximal end, and an interior between the proximal end and the distal end that contains fiber end sections. The interior of the pulling grip assembly is sealed off from an exterior of the cable assembly to provide sealed protection for the fiber end sections over an ambient temperate range of at least between ?20 to 50° C. while applying a tensile load of at least 300 lbs to the distal end of the pulling grip assembly.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: February 20, 2024
    Assignee: Corning Research & Development Corporation
    Inventors: Christopher Shawn Houser, Charles Gregory Stroup
  • Patent number: 11906826
    Abstract: Disclosed is a liquid crystal display device which can be used in a variety of situations and applications. The liquid crystal display device comprises: a first substrate comprising a first display region, a second display region, and a third display region wherein the first display region, the second display region, and the third display region are continuously formed; a second substrate having a form which fits the first substrate; and a liquid crystal interposed between the first substrate and the second substrate. The second display region is interposed between the first display region and the second display region. The second display region is curved, and the first display region and the second display region are substantially flat.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: February 20, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuji Ishitani
  • Patent number: 11886006
    Abstract: The present invention provides a polymer optical waveguide having a core, an under cladding and an over cladding, in which: the polymer optical waveguide has a first section on one end side in the light propagation direction where no portion of the over cladding exists and the core and the under cladding are exposed, and a second section on the other end side in the light propagation direction where the core is covered with the under cladding and the over cladding; and a relative refractive index difference among the core, the under cladding and the over cladding, a core width and core height in an end surface at the one end side of the first section, and a core width and core height in an end surface at the other end side of the second section satisfy predetermined relationships.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: January 30, 2024
    Assignee: AGC Inc.
    Inventors: Naoya Wada, Shotaro Takenobu, Kenta Kobayashi, Seiki Ohara
  • Patent number: 11880071
    Abstract: An optical assembly includes stacked first and second planar lightwave circuit (PLC) members each having a plurality of waveguides in respective first and second planes, to provide optical connections between a two-dimensional array and a one-dimensional array of external optical waveguides (e.g., optical fiber cores). Inner faces of first and second PLC members are arranged facing one another and with the first and second planes (corresponding to the pluralities of first and second waveguides, respectively) being non-parallel. An optical assembly may provide optical connections between arrays of cores having a different pitch to serve as a fanout interface. Methods for fabricating an optical assembly are further provided.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: January 23, 2024
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, David Francis Dawson-Elli, James Scott Sutherland
  • Patent number: 11860417
    Abstract: Aspects described herein include a method of fabricating an optical apparatus. The method comprises etching a plurality of trenches partly through a first optical waveguide formed in a first semiconductor layer, wherein a first ridge is formed in the first optical waveguide between adjacent trenches of the plurality of trenches. The method further comprises conformally depositing a spacer layer above the first optical waveguide, wherein spacers are formed on sidewalls of each trench of the plurality of trenches. The method further comprises etching through the spacer layer to expose a respective bottom of each trench, wherein, for each respective bottom, a width of the respective bottom is defined by the spacers formed on the sidewalls of the trench corresponding to the respective bottom. The method further comprises depositing a first dielectric layer above the first optical waveguide, wherein dielectric material extends to the respective bottom of each trench.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: January 2, 2024
    Assignee: Cisco Technology, Inc.
    Inventor: Xunyuan Zhang
  • Patent number: 11841530
    Abstract: A high-bandwidth bend-insensitive multimode fiber includes a core laver and a cladding including an inner cladding, a depressed cladding, and an outer cladding arranged sequentially from inside to outside. The core layer is a silicon dioxide glass layer co-doped with germanium, phosphorus (P), and fluorine (F) and has a refractive index profile in a shape of a parabola, a distribution index in a range of 2.0-2.3, a radius in a range of 23-27 ?m, and a maximum relative refractive index difference in a range of 0.9-1.2% at its center. A contribution amount of P at the center is in a range of 0.01-0.30%. A doping amount of F increases from the center to the edge of the core layer. A contribution amount of F at the center and edge of the core layer is in range of 0.0% to ?0.1%, and ?0.40% to ?0.20%, respectively.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 12, 2023
    Assignee: YANGTZE OPTICAL FIBRE AND CABLE JOINT STOCK LIMITED COMPANY
    Inventors: Wufeng Xiao, Rong Huang, Haiying Wang, Runhan Wang, Honghai Wang, Ruichun Wang
  • Patent number: 11835754
    Abstract: A patch cord for transmitting between a single mode fiber (SMF) and a multi-mode fiber (MMFs) has a MMF, SMF, and a photonic crystal fiber (PCF) with a hollow core placed between the SMF and MMF. A mode field diameter (MFD) of the PCF hollow core section is in the range of 16 to 19 microns, the length of the PCF is between 1 cm to 10 cm, the MMF has 50+2 microns core diameter, the SMF has a 6-9 microns core diameter, and the coupling between the PCF mode to the MMF fundamental mode is maximized.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: December 5, 2023
    Assignee: Panduit Corp.
    Inventors: Jose M. Castro, Yu Huang, Bulent Kose, Richard J. Pimpinella, Asher S. Novick
  • Patent number: 11828935
    Abstract: A method for designing a device for multi-plane conversion of light radiation, the device implementing a plurality M of phase masks intercepting the light radiation in order to phase-shift the radiation for applying a predetermined transformation to the light radiation. First and second mode families (u,v) with separable variables (x,y) are defined. A number N of pairs of indices {i,j}k is chosen to form first and second used mode families, respectively, by selecting the modes of index pairs {i,j}k from the first mode family and from the second mode family, respectively. Next, the phase-shift quantities ?1(x,y) are established, the M phase masks making it possible to transform each mode of index pairs {i,j)k of the first used mode family into the mode of the same index pair {i,j}k of the second used mode family. A phase plate may be obtained by means of the design method and used in a multi-plane conversion device.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: November 28, 2023
    Assignee: CAILABS
    Inventor: Olivier Pinel
  • Patent number: 11808972
    Abstract: An optical fiber includes a glass portion, a primary coating layer, and a secondary coating layer. In the optical fiber, a value of microbend loss characteristic factor F?BL_G?? is 6.1 ([GPa?1·?m?2.5/rad8]·10?12) or less when represented by F?BL_G??=F?BL_G×F?BL_??, where F?BL_G is geometry microbend loss characteristic and F?BL_?? is optical microbend loss characteristic.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: November 7, 2023
    Assignee: Fujikura Ltd.
    Inventors: Ryo Maruyama, Kenji Yamashiro
  • Patent number: 11802071
    Abstract: A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing, face grinding and polishing the prepared medium-expansion block into a billet.
    Type: Grant
    Filed: January 29, 2022
    Date of Patent: October 31, 2023
    Assignee: China Building Materials Academy
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Patent number: 11804316
    Abstract: The invention discloses an underwater umbilical cable which is capable of temperature and vibration measuring and three-dimensional shape reconstruction, wherein underwater umbilical cable is used to connect underwater equipment and aquatic equipment; the underwater umbilical cable comprises an outer sheath, armored steel wires, an inner sheath, a power cable, a communication optical cable, a steel pipe, three strain measuring optical fibers, three temperature measuring optical fibers, a distributed optical fiber strain interrogator, a distributed optical fiber temperature interrogator and a processor. The invention can collect the operation status data of the umbilical cable for a long time. The collected data is highly objective, can truly reflect the real-time operation status of the umbilical cables, and plays an important role in guaranteeing the long-term submarine oil and gas exploitation.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: October 31, 2023
    Inventors: Yixin Zhang, Fei Xiong, Xuping Zhang, Chi Zhang, Long Chen, Shun Wang, Xiaohong Chen, Feng Wang
  • Patent number: 11795100
    Abstract: A composition for glass, and aluminosilicate glass, preparation method therefor, and use thereof. In molar percentage, in the composition, the total content of SiO2, B2O3, P2O5, GeO2 and TeO2 is 60˜85 mol %; the total content of Al2O3 and Ga2O3 is 3˜20 mol %; the total content of ZnO and Y2O3 is 0.1˜5 mol %; and the total content of alkaline earth metal oxide is 4˜30 mol %. The glass has a high strain point, a low melting temperature, and a high thermal expansion coefficient, has good toughness, and is suitable for large-scale industrial production.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: October 24, 2023
    Assignees: TUNGHSU TECHNOLOGY GROUP CO., LTD., TUNGHSU GROUP CO., LTD.
    Inventors: Qing Li, Guangtao Zhang, Junfeng Wang, Xiaoyi Wang, Dongcheng Yan, Lihong Wang, Quan Zheng
  • Patent number: 11796750
    Abstract: An optical cable includes a plurality of buffer tubes and an outer jacket surrounding the plurality of buffer tubes. Each of the plurality of buffer tubes includes a buffer tube jacket surrounding a plurality of flexible ribbons. The buffer tube jacket includes a first deformable material that has undergone permanent plastic deformation during formation of the optical cable to conform to an irregular axial cross-sectional shape of each respective plurality of flexible ribbons. Each flexible ribbon includes a plurality of optical fibers and a first longitudinal length. For each flexible ribbon, each optical fiber of the plurality of optical fibers is attached to an adjacent optical fiber of the plurality of optical fibers along a bond region comprising a second longitudinal length that is less than the first longitudinal length.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: October 24, 2023
    Assignee: PRYSMIAN S.P.A.
    Inventors: Ben H. Wells, Ehsan Fallahmohammadi, Brian G. Risch, Clint Nicholaus Anderson, John R. Sach, Jeffrey Scott Barker
  • Patent number: 11774681
    Abstract: A device including a waveguide having a first waveguide surface and a second waveguide surface parallel to the first waveguide surface is disclosed. The device may include a first light coupling device operatively coupled to the waveguide. The first light coupling device may include a first duct structure and a second duct structure oriented to reflect in-coupled light. Each of the first duct structure and the second duct structure may include a first planar region and a second planar region parallel to the first planar region and a first surface and a second surface parallel to the first surface. The device may also include a second light coupling device disposed between the first waveguide surface and the second waveguide surface. The second light coupling device may be positioned to receive reflected in-coupled light from the first light coupling device.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: October 3, 2023
    Assignee: Akonia Holographics LLC
    Inventors: Mark R. Ayres, Friso Schlottau, Adam Urness, Kenneth E. Anderson