Patents Examined by Christopher Danicic
  • Patent number: 9048719
    Abstract: A photovoltaic cell for the production from solar radiation of electrical energy includes a reservoir adapted to contain a quantity of photoionizable solution, a solar powered plasma generator in fluid communication with the reservoir, a solar powered ionization chamber in fluid communication with the plasma generator, an electrode baffle in fluid communication with the ionization chamber and a return fluid communication path from the electrode baffle to the reservoir. As arranged, the reservoir, the plasma generator, the ionization chamber and the electrode baffle form a closed fluid loop in order from the reservoir to the plasma generator to the ionization chamber to the electrode baffle and back to the reservoir.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: June 2, 2015
    Inventor: Jack L. Bernard
  • Patent number: 8993870
    Abstract: A solar tracker is provided to fix an altitude angle until the altitude of the sun secedes from a predetermined range after matching the altitude through once driving of one shaft that tracks the altitude angle and to drive only the other shaft that tracks an east-west azimuth angle in daily repetition in a state where the altitude angle of the sun, which is repeatedly changed according to seasons of the year in the range of the winter solstice having the lowest altitude angle and the summer solstice having the highest altitude angle, has an extremely small diurnal change, whereas the azimuth angle of the sun is repeatedly changed in one direction, that is, from sunup to sundown, in a day. Accordingly, consumption of firm power of a driving unit for tracking the sun can be minimized, and the operating and management costs of the device can be reduced.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 31, 2015
    Inventor: Boon-Do Eom
  • Patent number: 8969713
    Abstract: Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Seok Oh, Jung-Tae Kim, Nam-Kyu Song, Min Park, Yun-Seok Lee, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo, Dong-Uk Choi, Dong-Seop Kim, Byoung-June Kim
  • Patent number: 8962988
    Abstract: A device containing a solar cell is provided in the form of a stacked package that has a planar arrangement of conductive laminates at or below the surface of a heat sink. The planar alignment allows placement of electrical connections below the surface of the heat sink and reduces the vertical profile of the device, making it easier to be hermetically sealed. In specific embodiments the solar cell substrate is embedded within the heat sink during the manufacturing phase, eliminating the need for a thermally conductive substrate between the solar cell and the heat sink.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 24, 2015
    Assignee: Solar Junction Corporation
    Inventors: Paul F. Lamarche, Kyle Jeffrey Russo Tripp
  • Patent number: 8933328
    Abstract: A dye-sensitized solar cell module comprising: a plurality of electrically series-connected solar cells having a first conductive layer formed on an insulating substrate; a photoelectric conversion device formed on the first conductive layer; and a second conductive layer formed on the photoelectric conversion device, wherein the photoelectric conversion device has a photoelectric conversion layer having a porous semiconductor layer adsorbing a dye, a carrier transporting layer and a catalyst layer and the dye-sensitized solar cell module is characterized in that the second conductive layer of the above-described one solar cell contacts the first conductive layer of an adjacent another solar cell and the photoelectric conversion device of the above-described adjacent another solar cell contacts the second conductive layer of the above-described one solar cell.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: January 13, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ryohsuke Yamanaka, Nobuhiro Fuke, Atsushi Fukui
  • Patent number: 8907204
    Abstract: Provided is a thin film photoelectric conversion device with maximized output characteristic, which is achieved by improving an uneven current value of a photoelectric conversion cell caused by an uneven film thickness and an uneven film quality of a photoelectric conversion semiconductor layer, which may be generated in scaling up an integrated-type thin film photoelectric conversion device. The thin film photoelectric conversion device includes: a substrate, a transparent electrode layer, a photoelectric conversion unit, and a back electrode layer. An increasing rate ?Zt of the film thickness Zt of the transparent electrode layer along X and an increasing rate ?Zs of the film thickness Zs of the photoelectric conversion unit along X have different signs, wherein one line segment in a parallel direction to a main surface of the substrate is taken as X?.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: December 9, 2014
    Assignee: Kaneka Corporation
    Inventors: Takashi Fujibayashi, Toshiaki Sasaki, Yuko Tawada
  • Patent number: 8872021
    Abstract: An object is to increase conversion efficiency of a photoelectric conversion device without increase in the manufacturing steps. The photoelectric conversion device includes a first semiconductor layer formed using a single crystal semiconductor having one conductivity type which is formed over a supporting substrate, a buffer layer including a single crystal region and an amorphous region, a second semiconductor layer which includes a single crystal region and an amorphous region and is provided over the buffer layer, and a third semiconductor layer having a conductivity type opposite to the one conductivity type, which is provided over the second semiconductor layer. A proportion of the single crystal region is higher than that of the amorphous region on the first semiconductor layer side in the second semiconductor layer, and the proportion of the amorphous region is higher than that of the single crystal region on the third semiconductor layer side.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sho Kato, Yoshikazu Hiura, Akihisa Shimomura, Takashi Ohtsuki, Satoshi Toriumi, Yasuyuki Arai
  • Patent number: 8859892
    Abstract: A stacked package for a solar cell is provided with a planar arrangement of conductive laminates on the surface of the heat sink. The layered conductive laminate offers multi-directional orientation of the solar cell within the package by eliminating any orientation requirements between the chip and the substrate, and offers multiple options for placement of standard or flipped bypass diodes. The packaged solar cell of the invention provides a smaller horizontal and vertical profile than standard solar cell packages, making it easier to hermetically seal the package.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 14, 2014
    Assignee: Solar Junction Corporation
    Inventors: Paul F. Lamarche, Kyle Jeffrey Russo Tripp
  • Patent number: 8835742
    Abstract: A thermoelectric device and a method of manufacturing the same are provided. The thermoelectric device may include a nanowire having nanoparticles which are disposed on one of an exterior surface of the nanowire and an interior of the nanowire.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-kyung Lee, Byoung-lyong Choi, Sang-jin Lee
  • Patent number: 8822812
    Abstract: One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: September 2, 2014
    Assignee: SunPower Corporation
    Inventor: Brian S. Wares
  • Patent number: 8809667
    Abstract: A thermoelectric semiconductor component, comprising an electrically insulating substrate surface and a plurality of spaced-apart, alternating p-type (4) and n-type semiconductor structural elements (5) which are disposed on said surface and which are connected to each other in series in an electrically conductive manner alternatingly at two opposite ends of the respective semiconductor structural elements by conductive structures, in such a way that a temperature difference (2?T) between the opposite ends produces an electrical voltage between the conductive structures or that a voltage difference between the conductive structures (7, 9; 13, 15) produces a temperature difference (2?T) between the opposite ends, characterized in that the semiconductor structural elements have a first boundary surface between a first and a second silicon layer, the lattice structures of which are considered ideal and are rotated by an angle of rotation relative to each other about a first axis perpendicular to the substrate su
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 19, 2014
    Assignee: IHP GmbH—Innovations for High Performance Microelectronics
    Inventors: Martin Kittler, Manfred Reiche
  • Patent number: 8802972
    Abstract: Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: August 12, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Seok Oh, Jung-Tae Kim, Nam-Kyu Song, Min Park, Yun-Seok Lee, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo, Dong-Uk Choi, Dong-Seop Kim, Byoung-June Kim
  • Patent number: 8802974
    Abstract: A solar cell includes a p-n junction formed by joining a p-type semiconductor and an n-type semiconductor. The p-type semiconductor is a chalcopyrite compound semiconductor with a band gap of 1.5 eV or more within which an intermediate level exists with a half bandwidth of 0.05 eV or more. The intermediate level is different from an impurity level. The chalcopyrite compound semiconductor includes a first element having first electronegativity of 1.9 or more in Pauling units, the first element occupying a lattice site of the semiconductor. A portion of the first element is substituted with a second element having second electronegativity different from the first electronegativity, the second element being a congeneric element of the first element. The intermediate level is created by substituting the first element with the second element.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: August 12, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasutaka Nishida, Michihiko Inaba, Shinya Sakurada, Satoshi Itoh
  • Patent number: 8791358
    Abstract: This invention is related to energy scavenging device and in particular, to energy harvesting or scavenging from the environmental radiation covering from solar spectrum and thermal radiation. Energy harvesting device is an integrated device comprising the devices that capture the radiation and converted into electrons, and also energy management devices to manage the converted energy either to store, to operate the electronic devices, and/or recharge the batteries. The energy scavenging devices integrates several device capabilities such as energy conversion, management, and storing the energy, on a common platform. Herein a design of a device capable to scavenge or harvest the energy from environment radiation is disclosed. A primary objective of this invention is to provide a design of a scavenging device that harvests the energy from environment radiation, operates 24/7, thereby generate and store, manage the energy as required.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: July 29, 2014
    Assignee: Banpil Photonics Inc.
    Inventors: Achyut Kumar Dutta, Robert Olah
  • Patent number: 8772630
    Abstract: The present invention relates to solar cells. Such solar cells include a substrate containing a first impurity of a first conductive type and having a textured surface with a plurality of jagged portions. Such solar cells also have an emitter layer positioned on the textured surface and containing a second impurity of a second conductive type opposite to the first conductive type, a first electrode having a plurality of first metal particles, electrically connected to the emitter layer, and a second electrode electrically connected to the substrate. The diameter of the first metal particles is larger than the peak-to-peak distance between adjacent jagged portions.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 8, 2014
    Assignee: LG Electronics Inc.
    Inventors: Kyoungsoo Lee, Manhyo Ha, Jonghwan Kim
  • Patent number: 8735716
    Abstract: A solar cell includes a graphite substrate, an amorphous carbon layer having a thickness of not less than 20 nm and not more than 60 nm formed on the graphite substrate, an AlN layer formed on the amorphous carbon layer, a n-type nitride semiconductor layer formed on the AlN layer; a light-absorption layer including a nitride semiconductor layer formed on the n-type nitride semiconductor layer; a p-type nitride semiconductor layer formed on the light-absorption layer; a p-side electrode electrically connected to the p-type nitride semiconductor layer; and an n-side electrode electrically connected to the n-type nitride semiconductor layer. The amorphous carbon layer is obtained by oxidizing the surface of the graphite substrate.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: May 27, 2014
    Assignee: Panasonic Corporation
    Inventors: Nobuaki Nagao, Takahiro Hamada, Akihiro Itoh
  • Patent number: 8710353
    Abstract: Methods and systems for solar energy converter with increased photovoltaic and thermal conversion efficiencies including a collection optics for receiving and concentrating incident sunlight, or radiation from any other directed electromagnetic energy source, an optical filtering unit for separating and redirecting infrared light and ultraviolet light from incoming solar light, a thermal distribution unit redirecting heat from the optical filtering unit into a thermal-loop, and a photovoltaic for receiving the filtered light from the filtering system and converting the light into energy.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 29, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Scott Roger Shepard
  • Patent number: 8692107
    Abstract: Solar system for converting solar radiation into electric energy, the system comprising: a refraction array and a converting array, the refracting array including at least one refraction sub array, each of the refraction sub arrays including a plurality of refraction sites, each of the refraction sites refracting variable approach angle collimated solar radiation into a plurality of solar rays, each of the solar rays being of a different waveband, each of the refraction sites directing each of the solar rays, refracted thereby, in a different direction, the different direction being at least dependent on the approach angle of the solar radiation, the converting array including a plurality of broadband converting cells, positioned such that light refracted by the refraction array impinges on the converting array, wherein at any given moment, each of the converting cells receives solar rays of a specific waveband originating from different refraction sites and arriving from different directions thereto.
    Type: Grant
    Filed: April 5, 2009
    Date of Patent: April 8, 2014
    Assignee: Mosaic Crystals Ltd.
    Inventor: Moshe Einav
  • Patent number: 8664514
    Abstract: Described is a light chamber for amplifying solar radiation for purposes of generating electricity using photovoltaic panels. The light chamber includes a housing; a photovoltaic panel disposed within the housing; a plurality of wedge-shaped reflectors disposed within the housing configured to rotate along one or two axes and can be directed by an integrated circuit controller; a dome lens affixed to the upper end of the housing; a fresnel lens disposed between the dome lens and the photovoltaic panel; a reflector disposed around the inner surface of the housing; and another reflector disposed at or near the lower end of the housing.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: March 4, 2014
    Inventor: George M. Watters
  • Patent number: 8586854
    Abstract: A thermoelectric conversion element is configured to have two types of conductors with different Seebeck coefficients physically connected alternately with an electrode via one or more electrical resistance layers formed by electrical resistor having electrical resistance rate of 1×10?3 ?cm or more. This arrangement enables charges to be generated by the difference of temperature in both ends of the element and to be densely stored in the electrical resistance layers formed by electrical resistor. Moreover, it is thought that thermal energy equivalent to the difference of temperature is input into the electrical resistance layers and that electromotive force increases as a result of an increase of output voltage.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: November 19, 2013
    Assignee: Da Vinci Co., Ltd.
    Inventors: Kenji Higashi, Yuji Hori, Yoshikazu Tanaka, Yoji Yamada, Kaoru Kishigui, Akira Nakayama