Patents Examined by Christy Novacek
  • Patent number: 7029979
    Abstract: Methods for manufacturing semiconductor devices are disclosed. In a disclosed method, a first nitride layer and a device isolation oxide layer are etched to thereby expose a portion of a silicon substrate where an active region is to be formed. An epitaxial growth is performed on the active region and a first oxide layer is deposited thereon. Portions of the first oxide layer where a source and a drain are to be formed are etched. The first oxide layer deposited on the portions where the source and the drain are to be formed is then etched. An epitaxial growth is performed on the portions where the source and the drain are to be formed to thereby form the source and the drain. A second nitride layer is deposited thereon. A portion of the first oxide layer located where a gate is to be formed is etched using a gate mask. A third nitride layer is deposited on the source, the drain, and the exposed active region and then etched back to thereby form a nitride layer to control a length of the gate.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: April 18, 2006
    Assignee: DongbuAnam Semiconductor Inc.
    Inventor: Cheolsoo Park
  • Patent number: 7026237
    Abstract: An improved via and contact hole fill composition and method for using the composition in the dual damascene production of circuits is provided. Broadly, the fill compositions include a quantity of solid components including a polymer binder and a solvent system for the solid components. The boiling point of the solvent system is less than the cross-linking temperature of the composition. Preferred solvents for use in the solvent system include those selected from the group consisting of alcohols, ethers, glycol ethers, amides, ketones, and mixtures thereof. Preferred polymer binders are those having an aliphatic backbone and a molecular weight of less than about 80,000, with polyesters being particularly preferred.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: April 11, 2006
    Assignee: Brewer Science Inc.
    Inventors: James E. Lamb, III, Xie Shao
  • Patent number: 7015094
    Abstract: A ferroelectric memory device and a method of fabricating the same are disclosed. Four interlayer dielectric layers are stacked on cell array and peripheral circuit regions on a semiconductor substrate. A gate contact pad and a source/drain contact pad are connected to a gate electrode and a source/drain of the peripheral circuit transistor through the first interlayer dielectric layer. A gate contact plug and a source/drain contact plug are respectively connected to the gate contact pad and the source/drain contact pad through the second interlayer dielectric layer. First via holes expose the gate contact plug and the source contact plug through the third interlayer dielectric layer. A first interconnection extends between the third and fourth interlayer dielectric layers, covering the sidewalls of the first via holes and connected to at least one of the gate contact plug and the source/drain contact plug.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: March 21, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yong-Tak Lee
  • Patent number: 7011983
    Abstract: Large, light-weight organic devices and methods of preparing large, light-weight organic devices. Specifically, flexible and rigid light-weight plastics are implemented. The flexible plastic may be disposed from a reel. A metal grid is fabricated on the flexible plastic to provide current conduction over the large area. A transparent oxide layer is provided over the metal grid to form the bottom electrode of the organic device. A light emitting or light gathering organic layer is disposed on the transparent oxide layer. A second electrode is disposed over the organic layer. Electrodes are coupled to the metal grid and the second electrode to provide electrical current to or from the organic layer. Depending on the type of materials used for the organic layer, the organic device may comprise an area light device or a photovoltaic device.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: March 14, 2006
    Assignee: General Electric Company
    Inventors: Donald F. Foust, Anil R. Duggal, Richard J. Saia, Herbert S. Cole
  • Patent number: 7008822
    Abstract: A semiconductor component includes a substrate and multiple stacked, encapsulated semiconductor dice on the substrate. A first die is back bonded to the substrate and encapsulated in a first encapsulant, and a second die is back bonded to the first encapsulant. The first encapsulant has a planar surface for attaching the second die, and can also include locking features for the second die. The component also includes a second encapsulant encapsulating the second die and forming a protective body for the component. A method for fabricating the component includes the steps of attaching the first die to the substrate, forming the first encapsulant on the first die, attaching the second die to the first encapsulant, and forming the second encapsulant on the second die.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: March 7, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Todd O. Bolken, Chad A. Cobbley
  • Patent number: 7002206
    Abstract: A multi-bit memory unit and fabrication method thereof. A semiconductor substrate forming a protruding semiconductor substrate is provided, an ion implantation region is formed on the semiconductor substrate beside the protruding semiconductor substrate, a spacer is formed on a sidewall of the protruding semiconductor substrate, a doped region is formed on the semiconductor substrate, and an ONO layer is conformally formed on the surface of the protruding semiconductor substrate, the spacer, the doped region, and the semiconductor substrate.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: February 21, 2006
    Assignee: Macronix International Co., Ltd.
    Inventor: Erh-Kun Lai
  • Patent number: 6995096
    Abstract: For suppressing decomposition of an organic group (for example, a CH3 group) which is bonded to an Si atom of an organic SOG film for use in a flattening process at the time of an ashing process, there is provided a method comprising the steps of: forming an organic SOG layer directly on a lower wiring layer or on a predetermined film including a hillock protection layer which is formed on the lower wiring layer in advance; forming an upper wiring layer on the organic SOG layer without using an etching back process; forming a via hole through an etching process by using a patterned resist layer provided on the upper wiring layer as a mask; performing an ashing process with a plasma by making ions or radicals which are induced from oxygen gas as a main reactant, under an atmospheric pressure ranging from 0.01 Torr to 30.0 Torr; and filling said via hole with a conductive material so as to electrically connect the lower wiring layer to the upper wiring layer.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: February 7, 2006
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Hiroyuki Iida, Kazuto Ohbuchi, Atsushi Matsushita, Yoshio Hagiwara
  • Patent number: 6979587
    Abstract: The present invention provides an image sensor capable of suppressing the dark current due to crystalline defects occurring at an edge of a field oxide layer and a method for fabricating the same. The present invention provides an image sensor including: a semiconductor substrate; an active area including a photodiode area formed in a predetermined position of the substrate, a floating diffusion area having a smaller area than the photodiode area and a channel area having a bottle-neck structure connecting to the photodiode area and the floating diffusion area; a field area for isolating electrically the active area; a field stop layer being formed beneath the field area by having a wider area than the field area through an expansion towards the active area with a first width; and a gate electrode formed on the substrate by covering the channel area and having one side superposed with a second width on one entire side of the photodiode contacted to the channel area.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: December 27, 2005
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won-Ho Lee
  • Patent number: 6979626
    Abstract: According to one exemplary embodiment, a bipolar transistor comprises a base having a top surface. The bipolar transistor further comprises a base oxide layer situated on top surface of the base. The bipolar transistor further comprises a sacrificial post situated on the base oxide layer. The bipolar transistor further comprises a conformal layer situated over the sacrificial post and top surface of the base, where the conformal layer has a density greater than a density of the base oxide layer. The conformal layer may be, for example, HDPCVD oxide. According to this exemplary embodiment, the bipolar transistor further comprises a sacrificial planarizing layer situated over the conformal layer. The sacrificial planarizing layer has a first thickness in a first region between first and second link spacers and a second thickness in a second region outside of first and second link spacers, where the second thickness is generally greater than the first thickness.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: December 27, 2005
    Assignee: Newport Fab, LLC
    Inventors: Amol Kalburge, Kevin Q. Yin, Kenneth Ring
  • Patent number: 6969641
    Abstract: According to one embodiment of the invention, a method of packaging integrated circuits includes disposing an integrated circuit chip outwardly from a first surface of a substrate, positioning the integrated circuit chip and the substrate between a first mold press die and a second mold press die, and engaging the first mold press die with the second mold press die such that the integrated circuit chip is disposed within a cavity formed by the engagement of the first mold press die with the second mold press die. The cavity includes a pre-warped configuration. The method further includes encapsulating the integrated circuit chip with a mold compound such that the mold compound takes on the pre-warped configuration of the cavity, removing the encapsulated integrated circuit chip from the cavity, and curing the mold compound. The curing transforms the mold compound from the pre-warped configuration to a predefined configuration.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: November 29, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Akira Matsunami
  • Patent number: 6958546
    Abstract: A new method and processing sequence is provided for the formation of solder bumps that are in contact with underlying aluminum contact pads. A patterned layer of negative photoresist is interposed between a patterned layer of PE Si3N4 and a patterned layer of polyamide insulator. The patterned negative photoresist partially overlays the aluminum contact pad and prevents contact between the layer of polyamide insulator and the aluminum contact pad. By forming this barrier no moisture that is contained in the polyamide insulator can come in contact with the aluminum contact pad, therefore no corrosion in the surface of the aluminum contact pad can occur.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: October 25, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Fu-Jier Fan, Cheng-Yu Chu, Kuo Wei Lin, Shih-Jang Lin, Yang-Tung Fran, Chiou-Shian Peng
  • Patent number: 6958277
    Abstract: Methods are provided herein for treating substrate surfaces in preparation for subsequent nucleation-sensitive depositions (e.g., polysilicon or poly-SiGe) and adsorption-driven deposition (e.g. atomic layer deposition or ALD). Prior to depositing, the surface is treated with non-depositing plasma products. The treated surface more readily nucleates polysilicon and poly-SiGe (such as for a gate electrode), or more readily adsorbs ALD reactants (such as for a gate dielectric). The surface treatment provides surface moieties more readily susceptible to a subsequent deposition reaction, or more readily susceptible to further surface treatment prior to deposition. By changing the surface termination of the substrate with a low temperature radical treatment, subsequent deposition is advantageously facilitated without depositing a layer of any appreciable thickness and without significantly affecting the bulk properties of the underlying material.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: October 25, 2005
    Assignee: ASM America, Inc.
    Inventors: Christophe F. Pomarede, Jeff Roberts, Eric J. Shero
  • Patent number: 6949424
    Abstract: A method of forming a bipolar transistor device, and more particularly a vertical poly-emitter PNP transistor, as part of a BiCMOS type manufacturing process is disclosed. The formation of the PNP transistor during a CMOS/DMOS fabrication process requires merely one additional mask to facilitate formation of a very small emitter in a portion of an N-type surface layer of a double diffused well (DWELL). Unlike conventional PNP transistors, a separate mask is not required to establish the base of the transistor as the transistor base is formed from a portion of the double diffused well and the DWELL includes a P-type body layer formed via implantation through the same opening in the same mask utilized to establish the N-type surface layer of the double diffused well. The base is also thin thus improving the transistor's frequency and gain.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 27, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Lily Springer
  • Patent number: 6949449
    Abstract: A method of forming a scribe line having a sharp snap line entails directing a UV laser beam along a ceramic substrate such that a portion of the thickness of the ceramic substrate is removed. The UV laser beam forms a scribe line in the ceramic substrate in the absence of appreciable ceramic substrate melting so that a clearly defined snap line forms a region of high stress concentration extending into the thickness of the ceramic substrate. Consequently, multiple depthwise fractures propagate into the thickness of the ceramic substrate in the region of high stress concentration in response to a breakage force applied to either side of the scribe line to effect clean breakage of the ceramic substrate into separate circuit components. The formation of this region facilitates higher precision breakage of the ceramic substrate while maintaining the integrity of the interior structure of each component during and after application of the breakage force.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: September 27, 2005
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Edward J. Swenson, Yunlong Sun, Manoj Kumar Sammi, Jay Christopher Johnson
  • Patent number: 6949441
    Abstract: A ferroelectric memory device, e.g., nonvolatile, has an effective layout by eliminating a separate cell plate line. The ferroelectric memory device includes first and second split word lines formed over first and second active regions of a semiconductor substrate, and the first and second active regions are isolated from each other. Source and drain regions are formed in the first active region on both sides of the first split word line and the second active region on both sides of the second split word line. A conductive barrier layer, a first capacitor electrode and a ferroelectric layer are sequentially formed on the first and second split word lines. Two second capacitor electrodes with one connected to one of the source and drain regions of the second active region is formed over the first split word line. The other one is connected to one of the source and drain regions of the first active region and is formed over the second split word line.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: September 27, 2005
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventor: Hee Bok Kang
  • Patent number: 6949394
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: September 27, 2005
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fumihiko Kobayashi, Take Miyazawa, Hidefumi Mori, Jun-ichi Nakano
  • Patent number: 6943110
    Abstract: A cluster tool and a number of different processes for making a cobalt-silicide material are disclosed. Combinations of alloyed layers of Co—Ti—along with layers of Co—are arranged and heat treated so as to effectuate a silicide reaction. The resulting structures have extremely low resistance, and show little line width dependence, thus making them particularly attractive for use in semiconductor processing. A cluster tool is configured with appropriate sputter targets/heat assemblies to implement many of the needed operations for the silicide reactions, thus resulting in higher savings, productivity, etc.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: September 13, 2005
    Assignee: United Microelectronics, Corp.
    Inventors: Water Lur, David Lee, Kuang-Chih Wang
  • Patent number: 6939747
    Abstract: An integrated circuit module has a common function known good integrated circuit die with selectable functions. The selectable functions are selected during packaging of the known good integrated circuit die. The known good integrated circuit die is mounted to a second level substrate. The second level substrate has wiring connections to the input/output pads of the known good integrated circuit die that select desired input functions and output functions. Further, the wiring connections on the second level substrate provide signal paths to transfer signals to the desired input function and signals from the desired output function, and signals to and from the common functions. Also, the wiring connections form connections between the input/output pads and external circuitry. To select the desired input functions and the desired output functions, appropriate logic states are applied to input/output pads connected to a function selector to configure a functional operation of the integrated circuit module.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: September 6, 2005
    Assignee: Megic Corporation
    Inventor: Mou-Shiung Lin
  • Patent number: 6939802
    Abstract: A semiconductor device having stable device characteristics, in which variation in contact resistance between silicon and poly-silicon or between poly-silicon and poly-silicon is reduced. In a cleaning process before forming an upper layer poly-silicon film, a treatment is conducted to form a thin uniform oxide film on the surface of silicon. After forming the upper layer poly-silicon film 11, a removed portion is uniformly formed on the thin uniform oxide film by applying a short time, high temperature annealing treatment.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 6, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Masaaki Ikegami
  • Patent number: RE38914
    Abstract: A method for forming a via through a dielectric layer within a microelectronics fabrication. There is first provided a substrate having a contact region formed therein. There is then formed upon the substrate and covering the contact region a blanket first dielectric layer formed of a first dielectric material which is not susceptible to etching with an oxygen containing plasma. There is then formed upon the blanket first dielectric layer a blanket second dielectric layer formed of a second dielectric material which is susceptible to etching within the oxygen containing plasma. There is then formed upon the blanket second dielectric layer a blanket hard mask layer formed from a hard mask material which is not susceptible to etching within the oxygen containing plasma.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 6, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Syun-Ming Jang, Chen-Hua Yu